Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 288(42): 30019-30028, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23986440

RESUMEN

The human sulfatase family has 17 members, 13 of which have been characterized biochemically. These enzymes specifically hydrolyze sulfate esters in glycosaminoglycans, sulfolipids, or steroid sulfates, thereby playing key roles in cellular degradation, cell signaling, and hormone regulation. The loss of sulfatase activity has been linked to severe pathophysiological conditions such as lysosomal storage disorders, developmental abnormalities, or cancer. A novel member of this family, arylsulfatase K (ARSK), was identified bioinformatically through its conserved sulfatase signature sequence directing posttranslational generation of the catalytic formylglycine residue in sulfatases. However, overall sequence identity of ARSK with other human sulfatases is low (18-22%). Here we demonstrate that ARSK indeed shows desulfation activity toward arylsulfate pseudosubstrates. When expressed in human cells, ARSK was detected as a 68-kDa glycoprotein carrying at least four N-glycans of both the complex and high-mannose type. Purified ARSK turned over p-nitrocatechol and p-nitrophenyl sulfate. This activity was dependent on cysteine 80, which was verified to undergo conversion to formylglycine. Kinetic parameters were similar to those of several lysosomal sulfatases involved in degradation of sulfated glycosaminoglycans. An acidic pH optimum (~4.6) and colocalization with LAMP1 verified lysosomal functioning of ARSK. Further, it carries mannose 6-phosphate, indicating lysosomal sorting via mannose 6-phosphate receptors. ARSK mRNA expression was found in all tissues tested, suggesting a ubiquitous physiological substrate and a so far non-classified lysosomal storage disorder in the case of ARSK deficiency, as shown before for all other lysosomal sulfatases.


Asunto(s)
Arilsulfatasas , Lisosomas/enzimología , Arilsulfatasas/biosíntesis , Arilsulfatasas/química , Arilsulfatasas/genética , Arilsulfatasas/aislamiento & purificación , Expresión Génica , Glicoproteínas/biosíntesis , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Cinética , Enfermedades por Almacenamiento Lisosomal/enzimología , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/genética , Especificidad por Sustrato/genética
2.
Proc Natl Acad Sci U S A ; 110(25): 10159-64, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733948

RESUMEN

With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme's binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415-385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Evolución Molecular , Filogenia , Tetrahidrofolato Deshidrogenasa/genética , Secuencia de Aminoácidos , Animales , Activación Enzimática/fisiología , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peces , Humanos , Mamíferos , Datos de Secuencia Molecular , Mutagénesis/fisiología , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Erizos de Mar , Especificidad de la Especie , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Urocordados
3.
J Biol Chem ; 288(8): 5828-39, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23288839

RESUMEN

Formylglycine-generating enzyme (FGE) post-translationally converts a specific cysteine in newly synthesized sulfatases to formylglycine (FGly). FGly is the key catalytic residue of the sulfatase family, comprising 17 nonredundant enzymes in human that play essential roles in development and homeostasis. FGE, a resident protein of the endoplasmic reticulum, is also secreted. A major fraction of secreted FGE is N-terminally truncated, lacking residues 34-72. Here we demonstrate that this truncated form is generated intracellularly by limited proteolysis mediated by proprotein convertase(s) (PCs) along the secretory pathway. The cleavage site is represented by the sequence RYSR(72)↓, a motif that is conserved in higher eukaryotic FGEs, implying important functionality. Residues Arg-69 and Arg-72 are critical because their mutation abolishes FGE processing. Furthermore, residues Tyr-70 and Ser-71 confer an unusual property to the cleavage motif such that endogenous as well as overexpressed FGE is only partially processed. FGE is cleaved by furin, PACE4, and PC5a. Processing is disabled in furin-deficient cells but fully restored upon transient furin expression, indicating that furin is the major protease cleaving FGE. Processing by endogenous furin occurs mostly intracellularly, although also extracellular processing is observed in HEK293 cells. Interestingly, the truncated form of secreted FGE no longer possesses FGly-generating activity, whereas the unprocessed form of secreted FGE is active. As always both forms are secreted, we postulate that furin-mediated processing of FGE during secretion is a physiological means of higher eukaryotic cells to regulate FGE activity upon exit from the endoplasmic reticulum.


Asunto(s)
Glicina/análogos & derivados , Proproteína Convertasas/metabolismo , Sulfatasas/antagonistas & inhibidores , Secuencias de Aminoácidos , Animales , Arginina/química , Sitios de Unión , Células CHO , Línea Celular Tumoral , Cricetinae , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Furina/química , Glicina/química , Células HEK293 , Células HeLa , Homeostasis , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Plásmidos/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteolisis , Tirosina/química
4.
PLoS One ; 7(3): e33066, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479358

RESUMEN

BACKGROUND: Selenium is an essential trace element in mammals due to its presence in proteins in the form of selenocysteine (Sec). Human genome codes for 25 Sec-containing protein genes, and mouse and rat genomes for 24. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the selenoproteomes of 44 sequenced vertebrates by applying gene prediction and phylogenetic reconstruction methods, supplemented with the analyses of gene structures, alternative splicing isoforms, untranslated regions, SECIS elements, and pseudogenes. In total, we detected 45 selenoprotein subfamilies. 28 of them were found in mammals, and 41 in bony fishes. We define the ancestral vertebrate (28 proteins) and mammalian (25 proteins) selenoproteomes, and describe how they evolved along lineages through gene duplication (20 events), gene loss (10 events) and replacement of Sec with cysteine (12 events). We show that an intronless selenophosphate synthetase 2 gene evolved in early mammals and replaced functionally the original multiexon gene in placental mammals, whereas both genes remain in marsupials. Mammalian thioredoxin reductase 1 and thioredoxin-glutathione reductase evolved from an ancestral glutaredoxin-domain containing enzyme, still present in fish. Selenoprotein V and GPx6 evolved specifically in placental mammals from duplications of SelW and GPx3, respectively, and GPx6 lost Sec several times independently. Bony fishes were characterized by duplications of several selenoprotein families (GPx1, GPx3, GPx4, Dio3, MsrB1, SelJ, SelO, SelT, SelU1, and SelW2). Finally, we report identification of new isoforms for several selenoproteins and describe unusually conserved selenoprotein pseudogenes. CONCLUSIONS/SIGNIFICANCE: This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages. It also provides a wealth of information on these selenoproteins and their forms.


Asunto(s)
Mamíferos/metabolismo , Proteoma/metabolismo , Selenoproteínas/metabolismo , Vertebrados/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Molecular , Duplicación de Gen , Humanos , Mamíferos/genética , Datos de Secuencia Molecular , Mutación , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/clasificación , Proteoma/genética , Proteómica , Seudogenes/genética , Selenoproteínas/clasificación , Selenoproteínas/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Vertebrados/genética
5.
Proc Natl Acad Sci U S A ; 108(30): 12348-53, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21709235

RESUMEN

The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we report a whole-genome analysis of two animals originating from extreme northwest and southeast Tasmania, the maximal geographic spread, together with the genome from a tumor taken from one of them. A 3.3-Gb de novo assembly of the sequence data from two complementary next-generation sequencing platforms was used to identify 1 million polymorphic genomic positions, roughly one-quarter of the number observed between two genetically distant human genomes. Analysis of 14 complete mitochondrial genomes from current and museum specimens, as well as mitochondrial and nuclear SNP markers in 175 animals, suggests that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations.


Asunto(s)
Variación Genética , Marsupiales/genética , Animales , Cruzamiento , ADN Mitocondrial/genética , ADN de Neoplasias/genética , Extinción Biológica , Neoplasias Faciales/genética , Neoplasias Faciales/veterinaria , Genética de Población , Genoma Mitocondrial , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/veterinaria , Filogenia , Polimorfismo de Nucleótido Simple , Tasmania , Factores de Tiempo
6.
FEBS J ; 275(6): 1118-30, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18266766

RESUMEN

Formylglycine-generating enzyme (FGE) catalyzes in newly synthesized sulfatases the oxidation of a specific cysteine residue to formylglycine, which is the catalytic residue required for sulfate ester hydrolysis. This post-translational modification occurs in the endoplasmic reticulum (ER), and is an essential step in the biogenesis of this enzyme family. A paralog of FGE (pFGE) also localizes to the ER. It shares many properties with FGE, but lacks formylglycine-generating activity. There is evidence that FGE and pFGE act in concert, possibly by forming complexes with sulfatases and one another. Here we show that human pFGE, but not FGE, is retained in the ER through its C-terminal tetrapeptide PGEL, a noncanonical variant of the classic KDEL ER-retention signal. Surprisingly, PGEL, although having two nonconsensus residues (PG), confers efficient ER retention when fused to a secretory protein. Inducible coexpression of pFGE at different levels in FGE-expressing cells did not significantly influence the kinetics of FGE secretion, suggesting that pFGE is not a retention factor for FGE in vivo. PGEL is accessible at the surface of the pFGE structure. It is found in 21 mammalian species with available pFGE sequences. Other species carry either canonical signals (eight mammals and 26 nonmammals) or different noncanonical variants (six mammals and six nonmammals). Among the latter, SGEL was tested and found to also confer ER retention. Although evolutionarily conserved for mammalian pFGE, the PGEL signal is found only in one further human protein entering the ER. Its consequences for KDEL receptor-mediated ER retrieval and benefit for pFGE functionality remain to be fully resolved.


Asunto(s)
Retículo Endoplásmico/enzimología , Glicina/análogos & derivados , Señales de Clasificación de Proteína , Sulfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Biología Computacional , Secuencia Conservada , Evolución Molecular , Glicina/metabolismo , Humanos , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Conformación Proteica , Sulfatasas/análisis , Sulfatasas/química , Sulfatasas/genética
7.
Science ; 318(5851): 792-4, 2007 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17975064

RESUMEN

A full understanding of primate morphological and genomic evolution requires the identification of their closest living relative. In order to resolve the ancestral relationships among primates and their closest relatives, we searched multispecies genome alignments for phylogenetically informative rare genomic changes within the superordinal group Euarchonta, which includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews). We also constructed phylogenetic trees from 14 kilobases of nuclear genes for representatives from most major primate lineages, both extant colugos, and multiple treeshrews, including the pentail treeshrew, Ptilocercus lowii, the only living member of the family Ptilocercidae. A relaxed molecular clock analysis including Ptilocercus suggests that treeshrews arose approximately 63 million years ago. Our data show that colugos are the closest living relatives of primates and indicate that their divergence occurred in the Cretaceous.


Asunto(s)
Evolución Biológica , Primates/genética , Animales , ADN , Evolución Molecular , Fósiles , Genoma , Humanos , Mamíferos/clasificación , Mamíferos/genética , Datos de Secuencia Molecular , Filogenia , Primates/clasificación , Escandentios/clasificación , Escandentios/genética , Alineación de Secuencia
8.
Genome Res ; 17(12): 1797-808, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17984227

RESUMEN

This article describes a set of alignments of 28 vertebrate genome sequences that is provided by the UCSC Genome Browser. The alignments can be viewed on the Human Genome Browser (March 2006 assembly) at http://genome.ucsc.edu, downloaded in bulk by anonymous FTP from http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz28way, or analyzed with the Galaxy server at http://g2.bx.psu.edu. This article illustrates the power of this resource for exploring vertebrate and mammalian evolution, using three examples. First, we present several vignettes involving insertions and deletions within protein-coding regions, including a look at some human-specific indels. Then we study the extent to which start codons and stop codons in the human sequence are conserved in other species, showing that start codons are in general more poorly conserved than stop codons. Finally, an investigation of the phylogenetic depth of conservation for several classes of functional elements in the human genome reveals striking differences in the rates and modes of decay in alignability. Each functional class has a distinctive period of stringent constraint, followed by decays that allow (for the case of regulatory regions) or reject (for coding regions and ultraconserved elements) insertions and deletions.


Asunto(s)
Secuencia Conservada , Bases de Datos Genéticas , Alineación de Secuencia/métodos , Animales , Secuencia de Bases , Gatos , Bovinos , Codón Iniciador/genética , Codón de Terminación/genética , Perros , Genoma Humano , Cobayas , Humanos , Ratones , Datos de Secuencia Molecular , Mutagénesis Insercional , Conejos , Ratas , Eliminación de Secuencia
9.
Genome Res ; 17(4): 413-21, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17322288

RESUMEN

The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, armadillo, elephant, and opossum to identify informative coding indels that would serve as rare genomic changes to infer early events in placental mammal phylogeny. We also expanded our species sampling by including sequence data from >30 ongoing genome projects, followed by PCR and sequencing validation of each indel in additional taxa. Our data provide support for a sister-group relationship between Afrotheria and Xenarthra (the Atlantogenata hypothesis), which is in turn the sister-taxon to Boreoeutheria. We failed to recover any indels in support of a basal position for Xenarthra (Epitheria), which is suggested by morphology and a recent retroposon analysis, or a hypothesis with Afrotheria basal (Exafricoplacentalia), which is favored by phylogenetic analysis of large nuclear gene data sets. In addition, we identified two retroposon insertions that also support Atlantogenata and none for the alternative hypotheses. A revised molecular timescale based on these phylogenetic inferences suggests Afrotheria and Xenarthra diverged from other placental mammals approximately 103 (95-114) million years ago. We discuss the impacts of this topology on earlier phylogenetic reconstructions and repeat-based inferences of phylogeny.


Asunto(s)
Genoma , Mamíferos/genética , Filogenia , Alineación de Secuencia/métodos , Secuencia de Aminoácidos , Animales , Armadillos , Secuencia de Bases , Elefantes , Evolución Molecular , Humanos , Laminina/genética , Mamíferos/clasificación , Modelos Genéticos , Datos de Secuencia Molecular , Zarigüeyas , Proteínas Tirosina Fosfatasas/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...