Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Front Mol Biosci ; 11: 1352781, 2024.
Article En | MEDLINE | ID: mdl-38523660

Cilia are cellular signaling hubs. Given that human kinases are central regulators of signaling, it is not surprising that kinases are key players in cilia biology. In fact, many kinases modulate ciliogenesis, which is the generation of cilia, and distinct ciliary pathways. Several of these kinases are understudied with few publications dedicated to the interrogation of their function. Recent efforts to develop chemical probes for members of the cyclin-dependent kinase like (CDKL), never in mitosis gene A (NIMA) related kinase (NEK), and tau tubulin kinase (TTBK) families either have delivered or are working toward delivery of high-quality chemical tools to characterize the roles that specific kinases play in ciliary processes. A better understanding of ciliary kinases may shed light on whether modulation of these targets will slow or halt disease onset or progression. For example, both understudied human kinases and some that are more well-studied play important ciliary roles in neurons and have been implicated in neurodevelopmental, neurodegenerative, and other neurological diseases. Similarly, subsets of human ciliary kinases are associated with cancer and oncological pathways. Finally, a group of genetic disorders characterized by defects in cilia called ciliopathies have associated gene mutations that impact kinase activity and function. This review highlights both progress related to the understanding of ciliary kinases as well as in chemical inhibitor development for a subset of these kinases. We emphasize known roles of ciliary kinases in diseases of the brain and malignancies and focus on a subset of poorly characterized kinases that regulate ciliary biology.

2.
F1000Res ; 12: 308, 2023.
Article En | MEDLINE | ID: mdl-37545650

Transmembrane protein 106B (TMEM106B), a protein that is localized to the lysosome, is genetically linked to many neurodegenerative diseases and forms fibrils in diseased brains. The reproducibility of TMEM106B research would be enhanced if the community had access to well-characterized anti-TMEM106B antibodies. In this study, we characterized six commercially available TMEM106B antibodies for their performance in Western blot, immunoprecipitation, and immunofluorescence, using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.


Membrane Proteins , Nerve Tissue Proteins , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Reproducibility of Results , Blotting, Western , Fluorescent Antibody Technique , Immunoprecipitation
3.
Methods Mol Biol ; 2706: 201-214, 2023.
Article En | MEDLINE | ID: mdl-37558951

Cancer metastasis is a complex cascade that involves the activation of cancer cell migration and invasion of the extracellular space. Cancer-associated fibroblasts (CAFs) are known inducers of cancer cell invasion. However, current in vitro invasion assays such as the Boyden chamber assay are cumbersome and low throughput. Therefore, there is an urgent need for new ex vivo, surrogate invasion assays that can faithfully recapitulate the cancer cell invasion process in vitro and are amenable to large-scale screening of small-molecule libraries in a high-throughput fashion. Here, we describe a well-established high-throughput three-dimensional (3D) spheroid invasion assay as a powerful tool to identify novel molecular targets that can potentially mediate CAF-dependent cancer cell invasion.


High-Throughput Screening Assays , Small Molecule Libraries , Humans , High-Throughput Screening Assays/methods , Small Molecule Libraries/pharmacology , Spheroids, Cellular , Cell Movement , Neoplasm Invasiveness/prevention & control , Cell Line, Tumor
4.
Nat Rev Urol ; 20(2): 96-115, 2023 02.
Article En | MEDLINE | ID: mdl-36253570

Biallelic inactivation of the tumour suppressor gene Von Hippel-Lindau (VHL) occurs in the vast majority of clear cell renal cell carcinoma (ccRCC) instances, disrupting cellular oxygen-sensing mechanisms to yield a state of persistent pseudo-hypoxia, defined as a continued hypoxic response despite the presence of adequate oxygen levels. However, loss of VHL alone is often insufficient to drive oncogenesis. Results from genomic studies have shown that co-deletions of VHL with one (or more) of three genes encoding proteins involved in chromatin modification and remodelling, polybromo-1 gene (PBRM1), BRCA1-associated protein 1 (BAP1) and SET domain-containing 2 (SETD2), are common and important co-drivers of tumorigenesis. These genes are all located near VHL on chromosome 3p and are often altered following cytogenetic rearrangements that lead to 3p loss and precede the establishment of ccRCC. These three proteins have multiple roles in the regulation of crucial cancer-related pathways, including protection of genomic stability, antagonism of polycomb group (PcG) complexes to maintain a permissive transcriptional landscape in physiological conditions, and regulation of genes that mediate responses to immune checkpoint inhibitor therapy. An improved understanding of these mechanisms will bring new insights regarding cellular drivers of ccRCC growth and therapy response and, ultimately, will support the development of novel translational therapeutics.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinogenesis/genetics , Carcinoma, Renal Cell/pathology , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics
5.
Nat Chem Biol ; 18(8): 821-830, 2022 08.
Article En | MEDLINE | ID: mdl-35578032

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and few effective therapies. Here we identified MS023, an inhibitor of type I protein arginine methyltransferases (PRMTs), which has antitumor growth activity in TNBC. Pathway analysis of TNBC cell lines indicates that the activation of interferon responses before and after MS023 treatment is a functional biomarker and determinant of response, and these observations extend to a panel of human-derived organoids. Inhibition of type I PRMT triggers an interferon response through the antiviral defense pathway with the induction of double-stranded RNA, which is derived, at least in part, from inverted repeat Alu elements. Together, our results represent a shift in understanding the antitumor mechanism of type I PRMT inhibitors and provide a rationale and biomarker approach for the clinical development of type I PRMT inhibitors.


Protein-Arginine N-Methyltransferases , Triple Negative Breast Neoplasms , Biomarkers , Cell Line, Tumor , Humans , Interferons/therapeutic use , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
6.
Front Cell Neurosci ; 16: 809917, 2022.
Article En | MEDLINE | ID: mdl-35295905

Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.

7.
Cancer Res ; 81(9): 2457-2469, 2021 05 01.
Article En | MEDLINE | ID: mdl-33574085

A subset of stem-like cells in glioblastoma (GBM; GSC) underlies tumor propagation, therapeutic resistance, and tumor recurrence. Immune evasion is critical for GSCs to carry out these functions. However, the molecular mechanisms employed by GSCs to escape antitumor immunity remain largely unknown. The reprogramming transcription factors Oct4 and Sox2 function as core multipotency factors and play an essential role in the formation and maintenance of GSCs, but the roles of these transcription factors in GSC immune escape have not been well explored. Here we examine how Oct4/Sox2 coexpression contributes to the immunosuppressive phenotype of GSCs. Combined transcription profiling and functional studies of Oct4/Sox2 coexpressing GSCs and differentiated GBM cells demonstrated that Oct4 and Sox2 cooperatively induce an immunosuppressive transcriptome consisting of multiple immunosuppressive checkpoints (i.e., PD-L1, CD70, A2aR, TDO) and dysregulation of cytokines and chemokines that are associated with an immunosuppressive tumor microenvironment. Mechanistically, induction and function of BRD/H3k27Ac-dependent immunosuppressive genes played a role in the immunosuppressive phenotype of GSCs. Pan-BET bromodomain inhibitors (e.g., JQ1) and shBRD4 constructs significantly inhibited the immunosuppressive transcriptome and immunosuppressive biological responses induced by Oct4/Sox2. Our findings identify targetable mechanisms by which tumor-propagating GSCs contribute to the immunosuppressive microenvironment in GBM. SIGNIFICANCE: This report identifies mechanisms by which the reprogramming transcription factors Oct4 and Sox2 function to drive the immunomodulatory transcriptome of GSCs and contribute to the immunosuppressive microenvironment in GBM.


Cell Cycle Proteins/metabolism , Immune Tolerance , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Transcription Factors/metabolism , Transcriptome/immunology , Animals , Apoptosis/genetics , Brain Neoplasms , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle Proteins/genetics , Cell Movement/genetics , Female , Glioblastoma , Humans , Jurkat Cells , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics , THP-1 Cells , Transcription Factors/genetics , Transfection , Transgenes , Tumor Burden/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
8.
Nat Commun ; 12(1): 979, 2021 02 12.
Article En | MEDLINE | ID: mdl-33579912

Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.


Antineoplastic Agents/pharmacology , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Animals , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Cycle , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Epigenomics , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/metabolism , Protein-Arginine N-Methyltransferases/drug effects , Protein-Arginine N-Methyltransferases/genetics , RNA Splicing , Xenograft Model Antitumor Assays
9.
Nat Commun ; 11(1): 4205, 2020 08 21.
Article En | MEDLINE | ID: mdl-32826891

Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data suggests that the functionality of the E2F pathway may reflect to some extent OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) strongly correlate with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.


Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/metabolism , Retinoblastoma Binding Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis/drug effects , Biomarkers, Tumor , Breast Neoplasms/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic/drug effects , Glucose Transporter Type 1/genetics , Humans , Mice , Oxidative Phosphorylation , Proteomics , Pyrazoles/pharmacology , Pyridines/pharmacology , Quinolines , RNA, Messenger/metabolism , Triple Negative Breast Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics
10.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Article En | MEDLINE | ID: mdl-32445698

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Ependymoma/genetics , Ependymoma/metabolism , Epigenome/genetics , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Proliferation/genetics , DNA Methylation/genetics , Epigenomics/methods , Histones/genetics , Histones/metabolism , Humans , Infant , Lysine/genetics , Lysine/metabolism , Male , Mice, Inbred C57BL , Mutation/genetics
12.
Nature ; 549(7671): 227-232, 2017 09 14.
Article En | MEDLINE | ID: mdl-28854171

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Cell Differentiation , Cell Lineage , Cell Tracking , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation , Clone Cells/drug effects , Clone Cells/pathology , Epigenesis, Genetic , Female , Glioblastoma/drug therapy , Heterografts , Humans , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Phenotype , Stochastic Processes
13.
Cell Stem Cell ; 21(2): 209-224.e7, 2017 08 03.
Article En | MEDLINE | ID: mdl-28712938

Glioblastomas exhibit a hierarchical cellular organization, suggesting that they are driven by neoplastic stem cells that retain partial yet abnormal differentiation potential. Here, we show that a large subset of patient-derived glioblastoma stem cells (GSCs) express high levels of Achaete-scute homolog 1 (ASCL1), a proneural transcription factor involved in normal neurogenesis. ASCL1hi GSCs exhibit a latent capacity for terminal neuronal differentiation in response to inhibition of Notch signaling, whereas ASCL1lo GSCs do not. Increasing ASCL1 levels in ASCL1lo GSCs restores neuronal lineage potential, promotes terminal differentiation, and attenuates tumorigenicity. ASCL1 mediates these effects by functioning as a pioneer factor at closed chromatin, opening new sites to activate a neurogenic gene expression program. Directing GSCs toward terminal differentiation may provide therapeutic applications for a subset of GBM patients and strongly supports efforts to restore differentiation potential in GBM and other cancers.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/pathology , Carcinogenesis/pathology , Cell Lineage , Chromatin/metabolism , Glioblastoma/pathology , Neurons/pathology , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Brain Neoplasms/genetics , Carcinogenesis/genetics , Cell Differentiation/genetics , Disease Progression , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neurons/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Sequence Analysis, RNA , Up-Regulation/genetics
14.
Nat Rev Drug Discov ; 14(3): 149-50, 2015 Mar.
Article En | MEDLINE | ID: mdl-25722227

The Structural Genomics Consortium (SGC) and its clinical, industry and disease-foundation partners are launching open-source preclinical translational medicine studies.


Cell Line , Drug Evaluation, Preclinical/methods , Primary Cell Culture , Humans , Patients , Public-Private Sector Partnerships , Translational Research, Biomedical
15.
RNA ; 20(2): 189-201, 2014 Feb.
Article En | MEDLINE | ID: mdl-24335142

Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.


Alternative Splicing , Ovarian Neoplasms/metabolism , RNA, Messenger/genetics , Cell Line, Tumor , Epithelial Cells/metabolism , Female , Gene Expression , Humans , Laser Capture Microdissection , Organ Specificity , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splice Sites , RNA Splicing Factors , RNA, Messenger/metabolism , RNA-Binding Proteins/physiology , Repressor Proteins/physiology , Stromal Cells/metabolism , Tumor Microenvironment
16.
Cancer Treat Res ; 158: 41-94, 2013.
Article En | MEDLINE | ID: mdl-24222354

For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186-93, 2002, Cartegni et al., Nat Rev Genet 3(4):285-98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389-96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584-94, 2004, Venables, Bioessays 28(4):378-86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635-2641, 2006, Revil et al., Bull Cancer 93(9):909-919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349-57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432-1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.


Proteomics , RNA Precursors , Alternative Splicing , Animals , Humans , Mutation , RNA Splicing , RNA, Messenger
17.
Nat Commun ; 4: 2480, 2013.
Article En | MEDLINE | ID: mdl-24048253

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has provided huge insight into the pathways, mechanisms and transcription factors that control differentiation. Here we use high-throughput RT-PCR technology to take a snapshot of splicing changes in the full spectrum of high- and low-expressed genes during induction of fibroblasts, from several donors, into iPSCs and their subsequent redifferentiation. We uncover a programme of concerted alternative splicing changes involved in late mesoderm differentiation and controlled by key splicing regulators MBNL1 and RBFOX2. These critical splicing adjustments arise early in vertebrate evolution and remain fixed in at least 10 genes (including PLOD2, CLSTN1, ATP2A1, PALM, ITGA6, KIF13A, FMNL3, PPIP5K1, MARK2 and FNIP1), implying that vertebrates require alternative splicing to fully implement the instructions of transcriptional control networks.


Alternative Splicing , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Induced Pluripotent Stem Cells/metabolism , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Cell Differentiation , Cells, Cultured , Cellular Reprogramming/genetics , Fibroblasts/cytology , Gene Expression Profiling , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/cytology , Infant, Newborn , Mesoderm/cytology , Mesoderm/growth & development , Mesoderm/metabolism , Protein Binding , RNA Splicing Factors , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Signal Transduction
18.
Mol Cell Biol ; 33(2): 396-405, 2013 Jan.
Article En | MEDLINE | ID: mdl-23149937

Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.


Alternative Splicing , Gene Expression Regulation , Mesenchymal Stem Cells/metabolism , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Cell Line, Tumor , Computational Biology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Exons , Fetus/cytology , Fetus/metabolism , Gene Expression Profiling , HeLa Cells , Humans , Mesenchymal Stem Cells/cytology , RNA Interference , RNA Splicing Factors , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction
19.
Mol Cell Biol ; 32(5): 954-67, 2012 Mar.
Article En | MEDLINE | ID: mdl-22203037

Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-x(S) splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.


Alternative Splicing , Apoptosis/genetics , Exons , bcl-X Protein/genetics , Apoptosis Regulatory Proteins/genetics , Carrier Proteins/genetics , Co-Repressor Proteins , DEAD-box RNA Helicases/genetics , Eukaryotic Initiation Factor-4A , HEK293 Cells , HeLa Cells , Humans , Nuclear Proteins/genetics , RNA Interference , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Ribonucleoproteins/genetics , Spliceosomes
20.
Int J Biochem Mol Biol ; 2(4): 303-8, 2011.
Article En | MEDLINE | ID: mdl-22187664

The over-expression of α-enolase was demonstrated in several cancers, including lung, brain, breast, colon and prostate. In this report, we investigated the effects of α-enolase knockdown on the sensitivity of cancer cells to chemotherapeutic drugs. RNAi-mediated knockdown of α-enolase in A549 and H460 lung, MCF7 breast and CaOV3 ovarian cancer cells caused a significant increase in the sensitivity of these cells to antitubulin chemotherapeutics (e.g., vincristine and taxol), but not to doxorubicin, etoposide or cisplatinum. This is the first demonstration showing the effects of α-enolase expression on the sensitivity of tumor cells to clinically relevant chemotherapeutics.

...