Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Free Radic Biol Med ; 215: 112-126, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336101

RESUMEN

Murine sickle cell disease (SCD) results in damage to multiple organs, likely mediated first by vasculopathy. While the mechanisms inducing vascular damage remain to be determined, nitric oxide bioavailability and sterile inflammation are both considered to play major roles in vasculopathy. Here, we investigate the effects of high mobility group box-1 (HMGB1), a pro-inflammatory damage-associated molecular pattern (DAMP) molecule on endothelial-dependent vasodilation and lung morphometrics, a structural index of damage in sickle (SS) mice. SS mice were treated with either phosphate-buffered saline (PBS), hE-HMGB1-BP, an hE dual-domain peptide that binds and removes HMGB1 from the circulation via the liver, 1-[4-(aminocarbonyl)-2-methylphenyl]-5-[4-(1H-imidazol-1-yl)phenyl]-1H-pyrrole-2-propanoic acid (N6022) or N-acetyl-lysyltyrosylcysteine amide (KYC) for three weeks. Human umbilical vein endothelial cells (HUVEC) were treated with recombinant HMGB1 (r-HMGB1), which increases S-nitrosoglutathione reductase (GSNOR) expression by ∼80%, demonstrating a direct effect of HMGB1 to increase GSNOR. Treatment of SS mice with hE-HMGB1-BP reduced plasma HMGB1 in SS mice to control levels and reduced GSNOR expression in facialis arteries isolated from SS mice by ∼20%. These changes were associated with improved endothelial-dependent vasodilation. Treatment of SS mice with N6022 also improved vasodilation in SS mice suggesting that targeting GSNOR also improves vasodilation. SCD decreased protein nitrosothiols (SNOs) and radial alveolar counts (RAC) and increased GSNOR expression and mean linear intercepts (MLI) in lungs from SS mice. The marked changes in pulmonary morphometrics and GSNOR expression throughout the lung parenchyma in SS mice were improved by treating with either hE-HMGB1-BP or KYC. These data demonstrate that murine SCD induces vasculopathy and chronic lung disease by an HMGB1- and GSNOR-dependent mechanism and suggest that HMGB1 and GSNOR might be effective therapeutic targets for reducing vasculopathy and chronic lung disease in humans with SCD.


Asunto(s)
Anemia de Células Falciformes , Benzamidas , Proteína HMGB1 , Enfermedades Pulmonares , Lesión Pulmonar , Pirroles , Enfermedades Vasculares , Humanos , Animales , Ratones , Lesión Pulmonar/etiología , Proteína HMGB1/genética , Células Endoteliales/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/genética , Inflamación , Enfermedades Vasculares/etiología
2.
Am J Respir Cell Mol Biol ; 70(2): 94-109, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37874230

RESUMEN

Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Ácido Tauroquenodesoxicólico , Recién Nacido , Animales , Ratas , Humanos , Displasia Broncopulmonar/patología , Hiperoxia/metabolismo , Ratas Sprague-Dawley , Pulmón/patología , Senescencia Celular , Peroxidasa/metabolismo , Oxidantes , Animales Recién Nacidos , Modelos Animales de Enfermedad
3.
PLoS One ; 17(8): e0269564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36018859

RESUMEN

Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Neumonía , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Humanos , Recién Nacido , Pulmón , Proteómica , Ratas , Ratas Sprague-Dawley , Tunicamicina
4.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34572970

RESUMEN

Plaque psoriasis is a common inflammatory condition of the skin characterized by red, flaking lesions. Current therapies for plaque psoriasis target many facets of the autoimmune response, but there is an incomplete understanding of how oxidative damage produced by enzymes such as myeloperoxidase contributes to skin pathology. In this study, we used the Aldara (Imiquimod) cream model of plaque psoriasis in mice to assess myeloperoxidase inhibition for treating psoriatic skin lesions. To assess skin inflammation severity, an innovative mouse psoriasis scoring system was developed. We found that myeloperoxidase inhibition ameliorated psoriasis severity when administered either systemically or topically. The findings of this study support the role of oxidative damage in plaque psoriasis pathology and present potential new therapeutic avenues for further exploration.

6.
Free Radic Biol Med ; 166: 73-89, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33607217

RESUMEN

Bronchopulmonary dysplasia (BPD) is caused primarily by oxidative stress and inflammation. To induce BPD, neonatal rat pups were raised in hyperoxic (>90% O2) environments from day one (P1) until day ten (P10) and treated with N-acetyl-lysyltyrosylcysteine amide (KYC). In vivo studies showed that KYC improved lung complexity, reduced myeloperoxidase (MPO) positive (+) myeloid cell counts, MPO protein, chlorotyrosine formation, increased endothelial cell CD31 expression, decreased 8-OH-dG and Cox-1/Cox-2, HMGB1, RAGE, TLR4, increased weight gain and improved survival in hyperoxic pups. EPR studies confirmed that MPO reaction mixtures oxidized KYC to a KYC thiyl radical. Adding recombinant HMGB1 to the MPO reaction mixture containing KYC resulted in KYC thiylation of HMGB1. In rat lung microvascular endothelial cell (RLMVEC) cultures, KYC thiylation of RLMVEC proteins was increased the most in RLMVEC cultures treated with MPO + H2O2, followed by H2O2, and then KYC alone. KYC treatment of hyperoxic pups decreased total HMGB1 in lung lysates, increased KYC thiylation of HMGB1, terminal HMGB1 thiol oxidation, decreased HMGB1 association with TLR4 and RAGE, and shifted HMGB1 in lung lysates from a non-acetylated to a lysyl-acetylated isoform, suggesting that KYC reduced lung cell death and that recruited immune cells had become the primary source of HMGB1 released into the hyperoxic lungs. MPO-dependent and independent KYC-thiylation of Keap1 were both increased in RLMVEC cultures. Treating hyperoxic pups with KYC increased KYC thiylation and S-glutathionylation of Keap1, and Nrf2 activation. These data suggest that KYC is a novel system pharmacological agent that exploits MPO to inhibit toxic oxidant production and is oxidized into a thiyl radical that inactivates HMGB1, activates Nrf2, and increases antioxidant enzyme expression to improve lung complexity and reduce BPD in hyperoxic rat pups.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Amidas , Animales , Animales Recién Nacidos , Humanos , Peróxido de Hidrógeno , Recién Nacido , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pulmón/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratas
7.
Diab Vasc Dis Res ; 17(3): 1479164120907971, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32223319

RESUMEN

OBJECTIVE: Diabetes mellitus is a significant risk factor for peripheral artery disease. Diabetes mellitus induces chronic states of oxidative stress and vascular inflammation that increase neutrophil activation and release of myeloperoxidase. The goal of this study is to determine whether inhibiting myeloperoxidase reduces oxidative stress and neutrophil infiltration, increases vascularization, and improves blood flow in a diabetic murine model of hindlimb ischaemia. METHODS: Leptin receptor-deficient (db/db) mice were subjected to hindlimb ischaemia. Ischaemic mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC) to inhibit myeloperoxidase. After ligating the femoral artery, effects of treatments were determined with respect to hindlimb blood flow, neutrophil infiltration, oxidative damage, and the capability of hindlimb extracellular matrix to support human endothelial cell proliferation and migration. RESULTS: KYC treatment improved hindlimb blood flow at 7 and 14 days in db/db mice; decreased the formation of advanced glycation end products, 4-hydroxynonenal, and 3-chlorotyrosine; reduced neutrophil infiltration into the hindlimbs; and improved the ability of hindlimb extracellular matrix from db/db mice to support endothelial cell proliferation and migration. CONCLUSION: These results demonstrate that inhibiting myeloperoxidase reduces oxidative stress in ischaemic hindlimbs of db/db mice, which improves blood flow and reduces neutrophil infiltration such that hindlimb extracellular matrix from db/db mice supports endothelial cell proliferation and migration.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Diabetes Mellitus/metabolismo , Inhibidores Enzimáticos/farmacología , Isquemia/tratamiento farmacológico , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Oligopéptidos/farmacología , Peroxidasa/antagonistas & inhibidores , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/enzimología , Isquemia/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/enzimología , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Flujo Sanguíneo Regional , Transducción de Señal
8.
Front Immunol ; 11: 608871, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569056

RESUMEN

Background: Allergic contact dermatitis (ACD) is a common skin disorder affecting an estimated 15-20% of the general population. The mouse model of ACD is contact hypersensitivity (CHS), which consists of two phases: induction and elicitation. Although neutrophils are required for both CHS disease phases their mechanisms of action are poorly understood. Neutrophils release myeloperoxidase (MPO) that through oxidation of biomolecules leads to cellular damage. Objectives: This study investigated mechanisms whereby MPO contributes to CHS pathogenesis. Methods: CHS was induced in mice using oxazolone (OX) as the initiating hapten applied to the skin. After 7 days, CHS was elicited by application of OX to the ear and disease severity was measured by ear thickness and vascular permeability in the ear. The role of MPO in the two phases of CHS was determined utilizing MPO-deficient mice and a specific MPO inhibitor. Results: During the CHS induction phase MPO-deficiency lead to a reduction in IL-1ß production in the skin and a subsequent reduction in migratory dendritic cells (DC) and effector T cells in the draining lymph node. During the elicitation phase, inhibition of MPO significantly reduced both ear swelling and vascular permeability. Conclusion: MPO plays dual roles in CHS pathogenesis. In the initiation phase MPO promotes IL-1ß production in the skin and activation of migratory DC that promote effector T cell priming. In the elicitation phase MPO drives vascular permeability contributing to inflammation. These results indicate that MPO it could be a potential therapeutic target for the treatment of ACD in humans.


Asunto(s)
Dermatitis por Contacto/inmunología , Neutrófilos/inmunología , Peroxidasa/inmunología , Animales , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Dermatitis Alérgica por Contacto/inmunología , Haptenos/inmunología , Inflamación/inmunología , Interleucina-1beta/inmunología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Oxazolona/inmunología , Piel/inmunología , Linfocitos T/inmunología
9.
Curr Opin Physiol ; 9: 26-33, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31240269

RESUMEN

Sickle cell disease (SCD) is characterized by chronic hemolysis and repeated episodes of vascular occlusion leading to progressive organ injury. SCD is characterized by unbalanced, simultaneous pro-oxidant and anti-oxidant processes at the molecular, cellular and tissue levels, with the majority of reactions tipped in favor of pro-oxidant pathways. In this brief review we discuss new findings regarding how oxidized hemin, hemolysis, mitochondrial dysfunction and the innate immune system generate oxidative stress while hemopexin, haptoglobin, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) may provide protection in human and murine SCD. We will also describe recent clinical trials showing beneficial effects of antioxidant therapy in SCD.

10.
Cell Rep ; 25(9): 2605-2616.e7, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485823

RESUMEN

The import of superoxide dismutase-2 (SOD2) into mitochondria is vital for the survival of eukaryotic cells. SOD2 is encoded within the nuclear genome and translocated into mitochondria for activation after translation in the cytosol. The molecular chaperone Hsp70 modulates SOD2 activity by promoting import of SOD2 into mitochondria. In turn, the activity of Hsp70 is controlled by co-chaperones, particularly CHIP, which directs Hsp70-bound proteins for degradation in the proteasomes. We investigated the mechanisms controlling the activity of SOD2 to signal activation and maintain mitochondrial redox balance. We demonstrate that Akt1 binds to and phosphorylates the C terminus of Hsp70 on Serine631, which inhibits CHIP-mediated SOD2 degradation thereby stabilizing and promoting SOD2 import. Conversely, increased mitochondrial-H2O2 formation disrupts Akt1-mediated phosphorylation of Hsp70, and non-phosphorylatable Hsp70 mutants decrease SOD2 import, resulting in mitochondrial oxidative stress. Our findings identify Hsp70 phosphorylation as a physiological mechanism essential for regulation of mitochondrial redox balance.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Animales , Células Endoteliales/metabolismo , Estabilidad de Enzimas , Femenino , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Serina/metabolismo , Ovinos , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
11.
Cell Immunol ; 317: 1-8, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28511921

RESUMEN

Myeloperoxidase (MPO) is the most toxic enzyme found in the azurophilic granules of neutrophils. MPO utilizes H2O2 to generate hypochlorous acid (HClO) and other reactive moieties, which kill pathogens during infections. In contrast, in the setting of sterile inflammation, MPO and MPO-derived oxidants are thought to be pathogenic, promoting inflammation and causing tissue damage. In contrast, evidence also exists that MPO can limit the extent of immune responses. Elevated MPO levels and activity are observed in a number of autoimmune diseases including in the central nervous system (CNS) of multiple sclerosis (MS) and the joints of rheumatoid arthritis (RA) patients. A pathogenic role for MPO in driving autoimmune inflammation was demonstrated using mouse models. Mechanisms whereby MPO is thought to contribute to disease pathogenesis include tuning of adaptive immune responses and/or the induction of vascular permeability.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad , Células Dendríticas/inmunología , Inflamación/inmunología , Peroxidasa/metabolismo , Animales , Permeabilidad Capilar , Humanos , Ratones , Terapia Molecular Dirigida
12.
J Vis Exp ; (121)2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28362381

RESUMEN

The interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5's ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides. IRF5D inhibited IRF5, reduced alterations in extracellular matrix, and improved endothelial vasodilation in the tight-skin mouse (Tsk/+). The Kd of IRF5D for recombinant IRF5 is 3.72 ± 0.74 x 10-6 M as determined by binding experiments using biolayer interferometry experiments. Endothelial cells (EC) proliferation and apoptosis were unchanged using increasing concentrations of IRF5D (0 to 100 µg/mL, 24 h). Tsk/+ mice were treated with IRF5D (1 mg/kg/d subcutaneously, 21 d). IRF5 and ICAM expressions were decreased after IRF5D treatment. Endothelial function was improved as assessed by vasodilation of facialis arteries from Tsk/+ mice treated with IRF5D compared to Tsk/+ mice without IRF5D treatment. As a transcription factor, IRF5 traffics from the cytosol to the nucleus. Translocation was assessed by immunohistochemistry on cardiac myocytes cultured on the different cardiac extracellular matrices. IRF5D treatment of the Tsk/+ mouse resulted in a reduced number of IRF5 positive nuclei in comparison to the animals without IRF5D treatment (50 µg/mL, 24 h). These findings demonstrate the important role that IRF5 plays in inflammation and fibrosis in Tsk/+ mice.


Asunto(s)
Endotelio Vascular/fisiología , Matriz Extracelular/patología , Vasodilatación/fisiología , Animales , Apoptosis , Proliferación Celular , Endotelio Vascular/citología , Fibrosis , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Modelos Animales
13.
J Biol Chem ; 292(6): 2369-2378, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028182

RESUMEN

Stress-inducible heat shock protein 70 (hsp70) interacts with superoxide dismutase 2 (SOD2) in the cytosol after synthesis to transfer the enzyme to the mitochondria for subsequent activation. However, the structural basis for this interaction remains to be defined. To map the SOD2-binding site in hsp70, mutants of hsp70 were made and tested for their ability to bind SOD2. These studies showed that SOD2 binds in the amino acid 393-537 region of the chaperone. To map the hsp70-binding site in SOD2, we used a series of pulldown assays and showed that hsp70 binds to the amino-terminal domain of SOD2. To better define the binding site, we used a series of decoy peptides derived from the primary amino acid sequence in the SOD2-binding site in hsp70. This study shows that SOD2 specifically binds to hsp70 at 445GERAMT450 Small peptides containing GERAMT inhibited the transfer of SOD2 to the mitochondria and decreased SOD2 activity in vitro and in vivo To determine the amino acid residues in hsp70 that are critical for SOD2 interactions, we substituted each amino acid residue for alanine or more conservative residues, glutamine or asparagine, in the GERAMT-binding site. Substitutions of E446A/Q and R447A/Q inhibited the ability of the GERAMT peptide to bind SOD2 and preserved SOD2 function more than other substitutions. Together, these findings indicate that the GERAMT sequence is critical for hsp70-mediated regulation of SOD2 and that Glu446 and Arg447 cooperate with other amino acid residues in the GERAMT-binding site for proper chaperone-dependent regulation of SOD2 antioxidant function.


Asunto(s)
Arginina/metabolismo , Ácido Glutámico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Superóxido Dismutasa/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Proteínas HSP70 de Choque Térmico/química , Mitocondrias/metabolismo , Ratas , Ovinos , Superóxidos/metabolismo
15.
J Neuroinflammation ; 13(1): 119, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27220420

RESUMEN

BACKGROUND: Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. METHODS: To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. RESULTS: Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. CONCLUSIONS: MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.


Asunto(s)
Lesiones Encefálicas , Infarto de la Arteria Cerebral Media/complicaciones , Fármacos Neuroprotectores/uso terapéutico , Oligopéptidos/uso terapéutico , Peroxidasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/etiología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oligopéptidos/farmacología , Oxidantes/metabolismo , Oxidantes/farmacología , Proteína p53 Supresora de Tumor/metabolismo
16.
PLoS One ; 11(4): e0151999, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27050551

RESUMEN

Interferon regulatory factor 5 (IRF5) has been called a "master switch" for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice. Biolayer interferometry studies showed the Kd of IRF5D for recombinant IRF5 to be 3.72 ± 0.74x10-6M. Increasing concentrations of IRF5D (0-100 µg/mL, 24h) had no significant effect on EC proliferation or apoptosis. Treatment of Tsk/+ mice with IRF5D (1mg/kg/d subcutaneously, 21d) reduced IRF5 and ICAM-1 expression and monocyte/macrophage and neutrophil counts in Tsk/+ hearts compared to expression in hearts from PBS-treated Tsk/+ mice (p<0.05). EC-dependent vasodilatation of facialis arteries isolated from PBS-treated Tsk/+ mice was reduced (~15%). IRF5D treatments (1mg/kg/d, 21d) improved vasodilatation in arteries isolated from Tsk/+ mice nearly 3-fold (~45%, p<0.05), representing nearly 83% of the vasodilatation in arteries isolated from C57Bl/6J mice (~55%). IRF5D (50µg/mL, 24h) reduced nuclear translocation of IRF5 in myocytes cultured on both Tsk/+ cardiac matrix and C57Bl/6J cardiac matrix (p<0.05). These data suggest that IRF5 plays a causal role in inflammation, fibrosis and impaired vascular EC function in Tsk/+ mice and that treatment with IRF5D effectively counters IRF5-dependent mechanisms of inflammation and fibrosis in the myocardium in these mice.


Asunto(s)
Endotelio Vascular/fisiopatología , Fibrosis/prevención & control , Factores Reguladores del Interferón/fisiología , Miocarditis/prevención & control , Péptidos/fisiología , Animales , Núcleo Celular/metabolismo , Factores Reguladores del Interferón/química , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Conformación Proteica , Transporte de Proteínas
17.
J Neurochem ; 136(4): 826-836, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26560636

RESUMEN

Oxidative stress is thought to contribute to disease pathogenesis in the central nervous system (CNS) disease multiple sclerosis (MS). Myeloperoxidase (MPO), a potent peroxidase that generates toxic radicals and oxidants, is increased in the CNS during MS. However, the exact mechanism whereby MPO drives MS pathology is not known. We addressed this question by inhibiting MPO in mice with experimental autoimmune encephalomyelitis (EAE) using our non-toxic MPO inhibitor N-acetyl lysyltyrosylcysteine amide (KYC). We found that therapeutic administration of KYC for 5 days starting at the peak of disease significantly attenuated EAE disease severity, reduced myeloid cell numbers and permeability of the blood-brain barrier. These data indicate that inhibition of MPO by KYC restores blood-brain barrier integrity thereby limiting migration of myeloid cells into the CNS that drive EAE pathogenesis. In addition, these observations indicate that KYC may be an effective therapeutic agent for the treatment of MS. We propose that during experimental autoimmune encephalomyelitis (EAE) onset macrophages and neutrophils migrate into the CNS and upon activation release myeloperoxidase (MPO) that promotes disruption of the blood-brain barrier (BBB) and disease progression. KYC restores BBB function by inhibiting MPO activity and in so doing ameliorates disease progression.

18.
J Stroke Cerebrovasc Dis ; 24(12): 2759-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26433438

RESUMEN

BACKGROUND: Insidious cumulative brain injury from motor vehicle-induced whole-body vibration (MV-WBV) has not yet been studied. The objective of the present study is to validate whether whole-body vibration for long periods causes cumulative brain injury and impairment of the cerebral function. We also explored a preventive method for MV-WBV injury. METHODS: A study simulating whole-body vibration was conducted in 72 male Sprague-Dawley rats divided into 9 groups (N = 8): (1) 2-week normal control; (2) 2-week sham control (in the tube without vibration); (3) 2-week vibration (exposed to whole-body vibration at 30 Hz and .5 G acceleration for 4 hours/day, 5 days/week for 2 weeks; vibration parameters in the present study are similar to the most common driving conditions); (4) 4-week sham control; (5) 4-week vibration; (6) 4-week vibration with human apolipoprotein A-I molecule mimetic (4F)-preconditioning; (7) 8-week sham control; (8) 8-week vibration; and (9) 8-week 4F-preconditioning group. All the rats were evaluated by behavioral, physiological, and histological studies of the brain. RESULTS: Brain injury from vibration is a cumulative process starting with cerebral vasoconstriction, squeezing of the endothelial cells, increased free radicals, decreased nitric oxide, insufficient blood supply to the brain, and repeated reperfusion injury to brain neurons. In the 8-week vibration group, which indicated chronic brain edema, shrunken neuron numbers increased and whole neurons atrophied, which strongly correlated with neural functional impairment. There was no prominent brain neuronal injury in the 4F groups. CONCLUSIONS: The present study demonstrated cumulative brain injury from MV-WBV and validated the preventive effects of 4F preconditioning.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Péptidos/uso terapéutico , Vibración , Accidentes de Tránsito , Animales , Lesiones Encefálicas/prevención & control , Masculino , Ratas , Ratas Sprague-Dawley
19.
Am J Physiol Lung Cell Mol Physiol ; 309(9): L1009-17, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320159

RESUMEN

An increase in oxygen tension at birth is one of the key signals that initiate pulmonary vasodilation in the fetal lung. We investigated the hypothesis that targeting endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane regulates reactive oxygen species (ROS) formation in the fetal pulmonary artery endothelial cells (PAEC) during this transition. We isolated PAEC and pulmonary arteries from 137-day gestation fetal lambs (term = 144 days). We exposed PAEC to a simulated transition from fetal to (3% O2) to normoxic (21%) or hyperoxic (95% O2) postnatal Po2 or to the nitric oxide synthase (NOS) agonist ATP. We assessed the effect of O2 and ATP on eNOS interactions with the mitochondrial outer membrane protein porin and with the chaperone hsp90. We also investigated the effect of decoy peptides that blocked eNOS interactions with porin or hsp90 on PAEC angiogenesis and vasodilator function of pulmonary arteries. Transition of fetal PAEC from 3 to 21% O2 but not to 95% O2 or exposure to ATP increased eNOS association with hsp90 and porin. Decoy peptides that blocked eNOS interactions decreased NO release, increased O2 consumption and mitochondrial ROS levels, and impaired PAEC angiogenesis. Decoy peptides also inhibited the relaxation responses of pulmonary artery rings and dilation of resistance size pulmonary arteries to ATP. The mitochondrial-antioxidant mito-ubiquinone restored the response to ATP in decoy peptide-treated pulmonary arteries. These data indicate that targeting eNOS to mitochondria decreases endothelial oxidative stress and facilitates vasodilation in fetal pulmonary circulation at birth.


Asunto(s)
Células Endoteliales/metabolismo , Feto/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/fisiología , Arteria Pulmonar/metabolismo , Animales , Células Cultivadas , Células Endoteliales/citología , Feto/citología , Proteínas HSP90 de Choque Térmico/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Arteria Pulmonar/citología , Ovinos , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...