Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38625940

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Carrier Proteins , Ubiquitin-Protein Ligases , Protein Binding , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/metabolism , Ubiquitin/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism
2.
Eur J Cell Biol ; 103(2): 151414, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38640594

The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.

3.
Nat Commun ; 14(1): 5871, 2023 09 21.
Article En | MEDLINE | ID: mdl-37735473

The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.


Leukemia , Transcription Factors , Animals , Male , Mice , Co-Repressor Proteins , Gene Expression Regulation , Genes, Regulator
4.
ACS Med Chem Lett ; 14(2): 199-210, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36793435

B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.

5.
ACS Cent Sci ; 8(5): 571-580, 2022 May 25.
Article En | MEDLINE | ID: mdl-35647281

High-throughput experimentation (HTE) seeks to accelerate the exploration of materials space by uniting robotics, combinatorial methods, and parallel processing. HTE is particularly relevant to metal halide perovskites (MHPs), a diverse class of optoelectronic materials with a large chemical space. Here we develop an HTE workflow to synthesize and characterize light-emitting MHP single crystals, allowing us to generate the first reported data set of experimentally derived photoluminescence spectra for low-dimensional MHPs. We leverage the accelerated workflow to optimize the synthesis and emission of a new MHP, methoxy-phenethylammonium lead iodide ((4-MeO-PEAI)2-PbI2). We then synthesize 16 000 MHP single crystals and measure their photoluminescence to study the effects of synthesis parameters and compositional engineering on the emission intensity of 54 distinct MHPs: we achieve an acceleration factor of more than 100 times over previously reported HTE MHP synthesis and characterization methods. Using insights derived from this analysis, we screen an existing database for new, potentially emissive MHPs. On the basis of the Tanimoto similarity of the bright available emitters, we present our top candidates for future exploration. As a proof of concept, we use one of these (3,4-difluorophenylmethanamine) to synthesize an MHP which we find has a photoluminescence quantum yield of 10%.

6.
J Mol Biol ; 434(9): 167527, 2022 05 15.
Article En | MEDLINE | ID: mdl-35257782

Ral Guanine Nucleotide Dissociation Stimulator Like 1 (RGL1) is a RAS effector protein that activates Ral GTPase by stimulating nucleotide exchange. Most structures of RAS-effector complexes are for the HRAS isoform; relatively few KRAS-effector structures have been solved, even though KRAS mutations are more frequent in human cancers. We determined crystal structures of KRAS/RGL1-RAS-association (RA) domain complexes and characterized the interaction in solution using nuclear magnetic resonance spectroscopy, size-exclusion chromatography combined with multi-angle light scattering and biolayer interferometry. We report structures of wild-type KRAS and the oncogenic G12V mutant in complex with the RA domain of RGL1 at < 2 Å resolution. KRASWT/RGL1-RA crystallized as a 1:1 heterodimer, whilst KRASG12V/RGL1-RA crystallized as a heterotetrameric structure in which RGL1-RA dimerized via domain-swapping the C-terminal beta-strand. Solution data indicated that KRASWT and KRASG12V in complex with RGL1-RA both exist predominantly as 1:1 dimers, while tetramerization occurs through very slow association. Through detailed structural analyses, the distance and angle between RAS α1 helix and RBD/RA α1 helix were found to differ significantly among RAS and RBD/RA complexes. The KRAS/RGL1-RA structures possess some of the largest α1RAS/α1Effector distances (21.7-22.2 Å), whereas the corresponding distances in previously reported RAS/RAF complexes are significantly shorter (15.2-17.7 Å). Contact map analysis identified unique structural signatures involving contacts between the ß1-ß2 loop of RA and the α1 helix of RAS, clearly distinguishing the KRAS/RGL1-RA (and other RAS/RA complexes) from RAS/RBD complexes. These results demonstrate that RAS effectors employ an assortment of finely-tuned docking surfaces to achieve optimal interactions with RAS.


Guanine Nucleotide Exchange Factors , Proto-Oncogene Proteins p21(ras) , Guanine Nucleotide Exchange Factors/chemistry , Humans , Mutation , Protein Domains , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics
7.
Clin Cancer Res ; 27(19): 5401-5414, 2021 10 01.
Article En | MEDLINE | ID: mdl-34168051

PURPOSE: The efficacy of EZH2 inhibition has been modest in the initial clinical exploration of diffuse large B-cell lymphoma (DLBCL), yet EZH2 inhibitors are well tolerated. Herein, we aimed to uncover genetic and pharmacologic opportunities to enhance the clinical efficacy of EZH2 inhibitors in DLBCL. EXPERIMENTAL DESIGN: We conducted a genome-wide sensitizing CRISPR/Cas9 screen with tazemetostat, a catalytic inhibitor of EZH2. The sensitizing effect of IKZF1 loss of function was then validated and leveraged for combination treatment with lenalidomide. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing analyses were performed to elucidate transcriptomic and epigenetic changes underlying synergy. RESULTS: We identified IKZF1 knockout as the top candidate for sensitizing DLBCL cells to tazemetostat. Treating cells with tazemetostat and lenalidomide, an immunomodulatory drug that selectively degrades IKAROS and AIOLOS, phenocopied the effects of the CRISPR/Cas9 screen. The combined drug treatment triggered either cell-cycle arrest or apoptosis in a broad range of DLBCL cell lines, regardless of EZH2 mutational status. Cell-line-based xenografts also showed slower tumor growth and prolonged survival in the combination treatment group. RNA-seq analysis revealed strong upregulation of interferon signaling and antiviral immune response signatures. Gene expression of key immune response factors such as IRF7 and DDX58 were induced in cells treated with lenalidomide and tazemetostat, with a concomitant increase of H3K27 acetylation at their promoters. Furthermore, transcriptome analysis demonstrated derepression of endogenous retroviruses after combination treatment. CONCLUSIONS: Our data underscore the synergistic interplay between IKAROS degradation and EZH2 inhibition on modulating epigenetic changes and ultimately enhancing antitumor effects in DLBCL.


Enhancer of Zeste Homolog 2 Protein , Lymphoma, Large B-Cell, Diffuse , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Lenalidomide , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology
8.
J Med Chem ; 64(2): 1139-1169, 2021 01 28.
Article En | MEDLINE | ID: mdl-33444025

The essential eukaryotic chaperone Hsp90 regulates the form and function of diverse client proteins, many of which govern thermotolerance, virulence, and drug resistance in fungal species. However, use of Hsp90 inhibitors as antifungal therapeutics has been precluded by human host toxicities and suppression of immune responses. We recently described resorcylate aminopyrazoles (RAPs) as the first class of Hsp90 inhibitors capable of discriminating between fungal (Cryptococcus neoformans, Candida albicans) and human isoforms of Hsp90 in biochemical assays. Here, we report an iterative structure-property optimization toward RAPs capable of inhibiting C. neoformans growth in culture. In addition, we report the first X-ray crystal structures of C. neoformans Hsp90 nucleotide binding domain (NBD), as the apoprotein and in complexes with the non-species-selective Hsp90 inhibitor NVP-AUY922 and three RAPs revealing unique ligand-induced conformational rearrangements, which reaffirm the hypothesis that intrinsic differences in protein flexibility can confer selective inhibition of fungal versus human Hsp90 isoforms.


Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Fungi/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Animals , Antifungal Agents/chemistry , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Humans , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Protein Binding , Pyrazoles/chemistry , Species Specificity , Structure-Activity Relationship
9.
J Biol Chem ; 295(42): 14458-14472, 2020 10 16.
Article En | MEDLINE | ID: mdl-32796038

Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.


Antifungal Agents/chemistry , Candida/metabolism , Fungal Proteins/metabolism , Antifungal Agents/metabolism , Binding Sites , Calcineurin/chemistry , Calcineurin/metabolism , Drug Design , Fungal Proteins/chemistry , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Dynamics Simulation , Mycoses/microbiology , Mycoses/pathology
10.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Article En | MEDLINE | ID: mdl-32619424

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Immunologic Memory/physiology , Lymphoma, Large B-Cell, Diffuse/pathology , Nuclear Proteins/genetics , Precursor Cells, B-Lymphoid/immunology , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/chemistry , Chromatin/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Histone Deacetylases/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/metabolism , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic
11.
Cell Metab ; 30(5): 963-975.e7, 2019 11 05.
Article En | MEDLINE | ID: mdl-31668873

Adipokines secreted from white adipose tissue play a role in metabolic crosstalk and homeostasis, whereas the brown adipose secretome is less explored. We performed high-sensitivity mass-spectrometry-based proteomics on the cell media of human adipocytes derived from the supraclavicular brown adipose and from the subcutaneous white adipose depots of adult humans. We identified 471 potentially secreted proteins covering interesting categories such as hormones, growth factors, extracellular matrix proteins, and proteins of the complement system, which were differentially regulated between brown and white adipocytes. A total of 101 proteins were exclusively quantified in brown adipocytes, and among these was ependymin-related protein 1 (EPDR1). EPDR1 was detected in human plasma, and functional studies suggested a role for EPDR1 in thermogenic determination during adipogenesis. In conclusion, we report substantial differences between the secretomes of brown and white human adipocytes and identify novel candidate batokines that can be important regulators of human metabolism.


Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipose Tissue, Brown/metabolism , Neoplasm Proteins/blood , Proteomics/methods , Adult , Aged , Animals , Cohort Studies , Female , Gene Knockdown Techniques , Goiter/blood , Goiter/pathology , Goiter/surgery , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neoplasm Proteins/genetics , Nerve Tissue Proteins , Secretory Pathway/genetics , Signal Transduction/genetics , Transfection , Young Adult
12.
Nat Commun ; 10(1): 3521, 2019 08 06.
Article En | MEDLINE | ID: mdl-31387993

The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.


CD36 Antigens/metabolism , Cholesterol, LDL/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Receptors, Scavenger/metabolism , Animals , CD36 Antigens/genetics , CHO Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cricetulus , Fibroblasts , Gene Knockout Techniques , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Lipid Droplets/metabolism , Lysosomal Membrane Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Niemann-Pick C1 Protein , Protein Domains , RNA, Small Interfering/metabolism , Receptors, Scavenger/genetics
14.
Commun Biol ; 2: 52, 2019.
Article En | MEDLINE | ID: mdl-30729188

EPDR1, a member of the ependymin-related protein family, is a relatively uncharacterized protein found in the lysosomes and secretomes of most vertebrates. Despite having roles in human disease and health, the molecular functions of EPDR1 remain unknown. Here, we present crystal structures of human EPDR1 and reveal that the protein adopts a fold previously seen only in bacterial proteins related to the LolA lipoprotein transporter. EPDR1 forms a homodimer with an overall shape resembling a half-shell with two non-overlapping hydrophobic grooves on the flat side of the hemisphere. EPDR1 can interact with membranes that contain negatively charged lipids, including BMP and GM1, and we suggest that EPDR1 may function as a lysosomal activator protein or a lipid transporter. A phylogenetic analysis reveals that the fold is more widely distributed than previously suspected, with representatives identified in all branches of cellular life.


Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , G(M1) Ganglioside/chemistry , Lysophospholipids/chemistry , Monoglycerides/chemistry , Neoplasm Proteins/chemistry , Periplasmic Binding Proteins/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , G(M1) Ganglioside/metabolism , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , Lysophospholipids/metabolism , Lysosomes/metabolism , Models, Molecular , Monoglycerides/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nerve Tissue Proteins , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Phylogeny , Plants/genetics , Plants/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
15.
Cancer Discov ; 9(5): 662-679, 2019 05.
Article En | MEDLINE | ID: mdl-30777872

Several lines of evidence link the canonical oncogene BCL6 to stress response. Here we demonstrate that BCL6 evolved in vertebrates as a component of the HSF1-driven stress response, which has been co-opted by the immune system to support germinal center formation and may have been decisive in the convergent evolution of humoral immunity in jawless and jawed vertebrates. We find that the highly conserved BTB corepressor binding site of BCL6 mediates stress adaptation across vertebrates. We demonstrate that pan-cancer cells hijack this stress tolerance mechanism to aberrantly express BCL6. Targeting the BCL6 BTB domain in cancer cells induces apoptosis and increases susceptibility to repeated doses of cytotoxic therapy. The chemosensitization effect upon BCL6 BTB inhibition is dependent on the derepression of TOX, implicating modulation of DNA repair as a downstream mechanism. Collectively, these data suggest a form of adaptive nononcogene addiction rooted in the natural selection of BCL6 during vertebrate evolution. SIGNIFICANCE: We demonstrate that HSF1 drives BCL6 expression to enable stress tolerance in vertebrates. We identify an HSF1-BCL6-TOX stress axis that is required by cancer cells to tolerate exposure to cytotoxic agents and points toward BCL6-targeted therapy as a way to more effectively kill a wide variety of solid tumors.This article is highlighted in the In This Issue feature, p. 565.


Adaptation, Physiological/physiology , Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-6/metabolism , Stress, Physiological/physiology , Animals , Apoptosis/physiology , B-Lymphocytes/cytology , B-Lymphocytes/physiology , Cell Proliferation/physiology , Cells, Cultured , Female , Germinal Center/cytology , Germinal Center/physiology , Heat Shock Transcription Factors/biosynthesis , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Heat-Shock Response , Heterografts , Humans , Male , Mice , Mice, Knockout , Mice, SCID , Neoplasms/enzymology , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-6/genetics
16.
J Am Soc Mass Spectrom ; 29(7): 1493-1504, 2018 07.
Article En | MEDLINE | ID: mdl-29654535

Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs (PLPDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB5). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PLPDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PLPDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB5 measured for pre-loaded PDs and PLPDs prepared from glycolipids extracted from pig and mouse brain revealed that the PLPDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PLPDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. Graphical Abstract ᅟ.

17.
J Virol ; 91(23)2017 12 01.
Article En | MEDLINE | ID: mdl-28904193

The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein.IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with MeV eradication vaccine programs and as a safeguard in oncolytic viral therapy. Three decades ago, the small hydrophobic peptide Z-d-Phe-l-Phe-Gly (FIP) was shown to block MeV infections and syncytium formation in monkey kidney cell lines. The exact mechanism of its action has yet to be determined, but it does appear to have properties similar to those of another chemical inhibitor, AS-48, which appears to interfere with the conformational change in the viral F protein that is required to elicit membrane fusion. Escape mutations were used to map the site of action for FIP. Knowledge gained from these studies could help in the design of new inhibitors against morbilliviruses and provide additional knowledge concerning the mechanism of virus-mediated membrane fusion.


Measles virus/drug effects , Measles virus/genetics , Mutation , Oligopeptides/pharmacology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Animals , Antiviral Agents/pharmacology , Benzamides/pharmacology , Chlorocebus aethiops , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/metabolism , Membrane Fusion/drug effects , Models, Molecular , Protein Binding , Vero Cells , Viral Fusion Proteins/chemistry , Virus Internalization/drug effects
18.
Anal Chem ; 88(19): 9524-9531, 2016 10 04.
Article En | MEDLINE | ID: mdl-27532319

Saposin A (SapA) lipoprotein discs, also known as picodiscs (PDs), represent an attractive method to solubilize glycolipids for protein interaction studies in aqueous solution. Recent electrospray ionization mass spectrometry (ESI-MS) data suggest that the size and composition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-containing PDs at neutral pH differs from those of N,N-dimethyldodecylamine N-oxide determined by X-ray crystallography. Using high-resolution ESI-MS, multiangle laser light scattering (MALLS), and molecular dynamics (MD) simulations, the composition, heterogeneity, and structure of POPC-PDs in aqueous ammonium acetate solutions at pH 4.8 and 6.8 were investigated. The ESI-MS and MALLS data revealed that POPC-PDs consist predominantly of (SapA dimer + iPOPC) complexes, with i = 23-29, and have an average molecular weight (MW) of 38.2 ± 3.3 kDa at pH 4.8. In contrast, in freshly prepared solutions at pH 6.8, POPC-PDs are composed predominantly of (SapA tetramer + iPOPC) complexes, with i = 37-60, with an average MW of 68.0 ± 2.7 kDa. However, the (SapA tetramer + iPOPC) complexes are unstable at neutral pH and convert, over a period of hours, to (SapA trimer + iPOPC) complexes, with i = 29-36, with an average MW of 51.1 ± 2.9 kDa. The results of molecular modeling suggest spheroidal structures for the (SapA dimer + iPOPC), (SapA trimer + iPOPC), and (SapA tetramer + iPOPC) complexes in solution. Comparison of measured collision cross sections (Ω) with values calculated for gaseous (SapA dimer + 26POPC)8+, (SapA trimer + 33POPC)12+, and (SapA tetramer + 42POPC)16+ ions produced from modeling suggests that the solution structures are largely preserved in the gas phase, although the lipids do not maintain regular bilayer orientations.


Lipoproteins/chemistry , Particle Size , Saposins/chemistry , Acetates/chemistry , Animals , Chickens , Gases/chemistry , Horses , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Molecular Weight , Phosphatidylcholines/chemistry , Spectrometry, Mass, Electrospray Ionization
19.
J Mol Biol ; 428(15): 3026-42, 2016 07 31.
Article En | MEDLINE | ID: mdl-27349982

Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction.


Saposins/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Catalytic Domain/physiology , Humans , Hydrolysis , Lipids/physiology , Lysosomes/metabolism , Membranes/metabolism , Proline/metabolism , Static Electricity
20.
EMBO J ; 35(12): 1254-75, 2016 06 15.
Article En | MEDLINE | ID: mdl-27220849

Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.


Cell Nucleus/metabolism , Macromolecular Substances/metabolism , Nuclear Proteins/metabolism , Protein Multimerization , Repressor Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Domains , Ubiquitination , Zinc Finger Protein Gli3
...