Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Virol ; 96(6): e0195921, 2022 03 23.
Article En | MEDLINE | ID: mdl-35107371

Seasonal influenza vaccination takes into account primarily hemagglutinin (HA)-specific neutralizing antibody responses. However, the accumulation of substitutions in the antigenic regions of HA (i.e., antigenic drift) occasionally results in a mismatch between the vaccine and circulating strains. To prevent poor vaccine performance, we investigated whether an antigenically matched neuraminidase (NA) may compensate for reduced vaccine efficacy due to a mismatched HA. Ferrets were vaccinated twice with adjuvanted split inactivated influenza vaccines containing homologous HA and NA (vacH3N2), only homologous HA (vacH3N1), only homologous NA (vacH1N2), heterologous HA and NA (vacH1N1), or phosphate-buffered saline (vacPBS), followed by challenge with H3N2 virus (A/Netherlands/16190/1968). Ferrets vaccinated with homologous HA (vacH3N2 and vacH3N1) displayed minimum fever and weight loss compared to vacH1N1 and vacPBS ferrets, while ferrets vaccinated with NA-matched vacH1N2 displayed intermediate fever and weight loss. Vaccination with vacH1N2 further led to a reduction in virus shedding from the nose and undetectable virus titers in the lower respiratory tract, similarly to when the homologous vacH3N2 was used. Some protection was observed upon vacH1N1 vaccination, but this was not comparable to that observed for vacH1N2, again highlighting the important role of NA in vaccine-induced protection. These results illustrate that NA antibodies can prevent severe disease caused by influenza virus infection and that an antigenically matched NA in seasonal vaccines might prevent lower respiratory tract complications. This underlines the importance of considering NA during the yearly vaccine strain selection process, which may be particularly beneficial in seasons when the HA component of the vaccine is mismatched. IMPORTANCE Despite the availability of vaccines, influenza virus infections continue to cause substantial morbidity and mortality in humans. Currently available influenza vaccines take primarily the hemagglutinin (HA) into account, but the highly variable nature of this protein as a result of antigenic drift has led to a recurrent decline in vaccine effectiveness. While the protective effect of neuraminidase (NA) antibodies has been highlighted by several studies, there are no requirements with regard to quantity or quality of NA in licensed vaccines, and NA immunity remains largely unexploited. Since antigenic changes in HA and NA are thought to occur asynchronously, NA immunity could compensate for reduced vaccine efficacy when drift in HA occurs. By matching and mismatching the HA and NA components of monovalent split inactivated vaccines, we demonstrated the potential of NA immunity to protect against disease, virus replication in the lower respiratory tract, and virus shedding in the ferret model.


Influenza A virus , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Ferrets , Hemagglutinins/immunology , Influenza A Virus, H3N2 Subtype , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza Vaccines/standards , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Seasons , Vaccines, Inactivated/immunology
2.
J Infect Dis ; 218(4): 614-623, 2018 07 13.
Article En | MEDLINE | ID: mdl-29912453

Background: High-pathogenicity avian influenza viruses continue to circulate in poultry and wild birds and occasionally infect humans, sometimes with fatal outcomes. Development of vaccines is a priority to prepare for potential pandemics but is complicated by antigenic variation of the surface glycoprotein hemagglutinin. We report the immunological profile induced by human immunization with modified vaccinia virus Ankara (MVA) expressing the hemagglutinin gene of influenza A(H5N1) virus A/Vietnam/1194/04 (rMVA-H5). Methods: In a double-blinded phase 1/2a clinical trial, 79 individuals received 1 or 2 injections of rMVA-H5 or vector control. Twenty-seven study subjects received a booster immunization after 1 year. The breadth, magnitude, and properties of vaccine-induced antibody and T-cell responses were characterized. Results: rMVA-H5 induced broadly reactive antibody responses, demonstrated by protein microarray, hemagglutination inhibition, virus neutralization, and antibody-dependent cellular cytotoxicity assays. Antibodies cross-reacted with antigenically distinct H5 viruses, including the recently emerged subtypes H5N6 and H5N8 and the currently circulating subtype H5N1. In addition, the induction of T cells specific for H5 viruses of 2 different clades was demonstrated. Conclusions: rMVA-H5 induced immune responses that cross-reacted with H5 viruses of various clades. These findings validate rMVA-H5 as vaccine candidate against antigenically distinct H5 viruses. Clinical Trials Registration: NTR3401.


Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , T-Lymphocytes/immunology , Adult , Antibody-Dependent Cell Cytotoxicity , Cross Reactions , Double-Blind Method , Drug Carriers , Female , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunization Schedule , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Male , Neutralization Tests , Protein Array Analysis , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Young Adult
3.
J Infect Dis ; 218(4): 581-585, 2018 07 13.
Article En | MEDLINE | ID: mdl-29659927

Extra-epitopic amino acid residues affect recognition of human influenza A viruses (IAVs) by CD8+ T-lymphocytes (CTLs) specific for the highly conserved HLA-A*0201 restricted M158-66 epitope located in the matrix 1 (M1) protein. These residues are absent in the M1 protein of the 2009-pandemic IAV (H1N1pdm09). Consequently, stimulation with M1 protein of H1N1pdm09 IAV resulted in stronger activation and lytic activity of M158-66-specific CTLs than stimulation with seasonal H3N2 IAVs. During >6 years of circulation in the human population, descendants of the H1N1pdm09 virus had accumulated 4 other amino acid substitutions. However, these did not affect M158-66-specific CTL activation.


CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/virology , Viral Matrix Proteins/immunology , Amino Acid Substitution , Epitopes, T-Lymphocyte/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/immunology , Sequence Deletion , Viral Matrix Proteins/genetics
4.
J Virol ; 92(11)2018 06 01.
Article En | MEDLINE | ID: mdl-29593036

Influenza virus-specific CD8+ T lymphocytes (CTLs) contribute to clearance of influenza virus infections and reduce disease severity. Variation at amino acid residues located in or outside CTL epitopes has been shown to affect viral recognition by virus-specific CTLs. In the present study, we investigated the effect of naturally occurring variation at residues outside the conserved immunodominant and HLA*0201-restricted M158-66 epitope, located in the influenza virus M1 protein, on the extent of virus replication in the presence of CTLs specific for the epitope. To this end, we used isogenic viruses with an M1 gene segment derived from either an avian or a human influenza virus, HLA-transgenic human epithelial cells, human T cell clones specific for the M158-66 epitope or a control epitope, and a novel, purposely developed in vitro system to coculture influenza virus-infected cells with T cells. We found that the M gene segment of a human influenza A/H3N2 virus afforded the virus the capacity to replicate better in the presence of M158-66-specific CTLs than the M gene segment of avian viruses. These findings are in concordance with previously observed differential CTL activation, caused by variation at extra-epitopic residues, and may reflect an immune adaptation strategy of human influenza viruses that allows them to cope with potent CTL immunity to the M158-66 epitope in HLA-A*0201-positive individuals, resulting in increased virus replication and shedding and possibly increasing disease severity.IMPORTANCE Influenza viruses are among the leading causes of acute respiratory tract infections. CD8+ T lymphocytes display a high degree of cross-reactivity with influenza A viruses of various subtypes and are considered an important correlate of protection. Unraveling viral immune evasion strategies and identifying signs of immune adaptation are important for defining the role of CD8+ T lymphocytes in affording protection more accurately. Improving our insight into the interaction between influenza viruses and virus-specific CD8+ T lymphocyte immunity may help to advance our understanding of influenza virus epidemiology, aid in risk assessment of potentially pandemic influenza virus strains, and benefit the design of vaccines that induce more broadly protective immunity.


CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza, Human/immunology , Viral Matrix Proteins/immunology , A549 Cells , Animals , Cell Line, Tumor , Dogs , Epitopes, T-Lymphocyte/genetics , HLA-A2 Antigen/immunology , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H5N1 Subtype/growth & development , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Viral Matrix Proteins/genetics , Virus Replication/immunology
5.
J Gen Virol ; 96(8): 2061-2073, 2015 Aug.
Article En | MEDLINE | ID: mdl-25900135

Influenza B viruses fall in two antigenically distinct lineages (B/Victoria/2/1987 and B/Yamagata/16/1988 lineage) that co-circulate with influenza A viruses of the H3N2 and H1N1 subtypes during seasonal epidemics. Infections with influenza B viruses contribute considerably to morbidity and mortality in the human population. Influenza B virus neutralizing antibodies, elicited by natural infections or vaccination, poorly cross-react with viruses of the opposing influenza B lineage. Therefore, there is an increased interest in identifying other correlates of protection which could aid the development of broadly protective vaccines. blast analysis revealed high sequence identity of all viral proteins. With two online epitope prediction algorithms, putative conserved epitopes relevant for study subjects used in the present study were predicted. The cross-reactivity of influenza B virus-specific polyclonal CD8+ cytotoxic T-lymphocyte (CTL) populations obtained from HLA-typed healthy study subjects, with intra-lineage drift variants and viruses of the opposing lineage, was determined by assessing their in vitro IFN-γ response and lytic activity. Here, we show for the first time, to the best of our knowledge, that CTLs directed to viruses of the B/Victoria/2/1987 lineage cross-react with viruses of the B/Yamagata/16/1988 lineage and vice versa.


CD8-Positive T-Lymphocytes/immunology , Cross Reactions , Influenza B virus/immunology , Influenza, Human/immunology , Adolescent , Adult , Amino Acid Sequence , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Humans , Influenza B virus/classification , Influenza B virus/genetics , Influenza, Human/virology , Male , Middle Aged , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid , Viral Proteins/chemistry , Viral Proteins/genetics , Young Adult
...