Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042269

RESUMEN

The recent surge of interest in polaritons has prompted fundamental questions about the role of dark states in strong light-matter coupling phenomena. Here, we systematically vary the relative number of dark states by controlling the number of stacked CdSe nanoplatelets confined in a Fabry-Pérot cavity. We find the emission spectrum to change significantly with an increasing number of nanoplatelets, with a gradual shift of the dominant emission intensity from the lower polariton branch to a manifold of dark states. Through accompanying calculations based on a kinetic model, this shift is rationalized by an entropic trapping of excitations by the dark state manifold, while a weak dark state dispersion due to local disorder explains their nonzero emission. Our results point toward the relevance of the dark state concentration to the optical and dynamical properties of cavity-embedded quantum emitters with ramifications for Bose-Einstein condensate formation, polariton lasing, polariton-based quantum transduction schemes, and polariton chemistry.

2.
J Chem Theory Comput ; 20(9): 3719-3728, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38661337

RESUMEN

We describe a matrix product state (MPS) extension for the Fermionic Quantum Emulator (FQE) software library. We discuss the theory behind symmetry-adapted MPSs for approximating many-body wave functions of spin-1/2 Fermions, and we present an open-source, MPS-enabled implementation of the FQE interface (MPS-FQE). The software uses the open-source pyblock3 and block2 libraries for most elementary tensor operations, and it can largely be used as a drop-in replacement for FQE that allows for more efficient but approximate emulation of larger Fermionic circuits. Finally, we show several applications relevant to both near-term and fault-tolerant quantum algorithms where approximate emulation of larger systems is expected to be useful: characterization of state preparation strategies for quantum phase estimation, the testing of different variational quantum eigensolver ansätze, the numerical evaluation of Trotter errors, and the simulation of general quantum dynamics problems. In all these examples, approximate emulation with MPS-FQE allows us to treat systems that are significantly larger than those accessible with a full statevector emulator.

3.
J Chem Phys ; 159(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37655761

RESUMEN

We develop an accurate and numerically efficient non-adiabatic path-integral approach to simulate the non-linear spectroscopy of exciton-polariton systems. This approach is based on the partial linearized density matrix approach to model the exciton dynamics with explicit propagation of the phonon bath environment, combined with a stochastic Lindblad dynamics approach to model the cavity loss dynamics. Through simulating both linear and polariton two-dimensional electronic spectra, we systematically investigate how light-matter coupling strength and cavity loss rate influence the optical response signal. Our results confirm the polaron decoupling effect, which is the reduced exciton-phonon coupling among polariton states due to the strong light-matter interactions. We further demonstrate that the polariton coherence time can be significantly prolonged compared to the electronic coherence outside the cavity.

4.
Nat Commun ; 14(1): 4804, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558658

RESUMEN

This work proposes a photophysical phenomenon whereby ultraviolet/visible (UV/vis) excitation of a molecule involving a Franck-Condon (FC) active vibration yields infrared (IR) emission by strong coupling to an optical cavity. The resulting UV/vis-to-IR photonic down conversion process is mediated by vibrational polaritons in the electronic excited state potential. It is shown that the formation of excited state vibrational polaritons (ESVP) via UV/vis excitation only involve vibrational modes with both a non-zero FC activity and IR activity in the excited state. Density functional theory calculations are used to identify 1-Pyreneacetic acid as a molecule with this property and the dynamics of ESVP are modeled. Overall, this work introduces an avenue of polariton chemistry where excited state dynamics are influenced by the formation of vibrational polaritons. Along with this, the UV/vis-to-IR photonic down conversion is potentially useful in both sensing excited state vibrations and quantum transduction schemes.

5.
J Chem Theory Comput ; 18(4): 2047-2061, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35230105

RESUMEN

The emergence of experiments capable of probing quantum dynamics at the single-molecule level requires the development of new theoretical tools capable of simulating and analyzing these dynamics beyond an ensemble-averaged description. In this article, we present an efficient method for sampling and simulating the dynamics of the individual quantum systems that make up an ensemble and apply it to study the nonequilibrium dynamics of the ubiquitous spin-boson model. We generate an ensemble of single-system trajectories, and we analyze this trajectory ensemble using tools from classical statistical mechanics. Our results demonstrate that the dynamics of quantum coherence is highly heterogeneous at the single-system level due to variations in the initial bath configuration, which significantly affects the transient exchange of coherence between the system and its bath. We observe that single systems tend to retain coherence over time scales longer than that of the ensemble. We also compute a novel thermodynamic entanglement entropy that quantifies a thermodynamic driving force favoring system-bath entanglement.


Asunto(s)
Termodinámica , Entropía
6.
J Chem Phys ; 154(22): 224109, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241200

RESUMEN

Ensembles of ab initio parameterized Frenkel-exciton model Hamiltonians for different perylene diimide dimer systems are used, together with various dissipative quantum dynamics approaches, to study the influence of the solvation environment and fluctuations in chromophore relative orientation and packing on the vibronic spectra of two different dimer systems: a π-stacked dimer in aqueous solution in which the relative chromophore geometry is strongly confined by a phosphate bridge and a side-by-side dimer in dichloromethane involving a more flexible alkyne bridge that allows quasi-free rotation of the chromophores relative to one another. These entirely first-principles calculations are found to accurately reproduce the main features of the experimental absorption spectra, providing a detailed mechanistic understanding of how the structural fluctuations and environmental interactions influence the vibronic dynamics and spectroscopy of solutions of these multi-chromophore complexes.

7.
J Chem Phys ; 154(22): 224101, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241207

RESUMEN

We derive a formulation of mixed quantum-classical dynamics for modeling electronic carriers interacting with phonons in reciprocal space. For dispersionless phonons, we start by expressing the real-space classical coordinates in terms of complex variables. Taking these variables as a Fourier series then yields the reciprocal-space coordinates. Evaluating the electron-phonon interaction term through Ehrenfest's theorem, we arrive at a reciprocal-space formalism that is equivalent to mean-field mixed quantum-classical dynamics in real space. This equivalence is numerically verified for the Holstein and Peierls models, for which we find the reciprocal-space Hellmann-Feynman forces to involve momentum-derivative contributions in addition to the position-derivative terms commonly seen in real space. To illustrate the advantage of the reciprocal-space formulation, we present a proof of concept for the inexpensive modeling of low-momentum carriers interacting with phonons using a truncated reciprocal-space basis, which is not possible within a real-space formulation.

8.
J Chem Phys ; 155(1): 014108, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241392

RESUMEN

The truncated Wigner approximation to quantum dynamics in phase space is explored in the context of computing vibronic line shapes for monomer linear optical spectra. We consider multiple model potential forms including a shifted harmonic oscillator with both equal and unequal frequencies on the ground and excited state potentials as well as a shifted Morse potential model. For the equal-frequency shifted harmonic oscillator model, we derive an analytic expression for the exact vibronic line shape that emphasizes the importance of using a quantum mechanical distribution of phase space initial conditions. For the unequal-frequency shifted harmonic oscillator model, we are no longer able to obtain an exact expression for the vibronic line shape in terms of independent deterministic classical trajectories. We show how one can rigorously account for corrections to the truncated Wigner approximation through nonlinear responses of the line shape function to momentum fluctuations along a classical trajectory and demonstrate the qualitative improvement in the resulting spectrum when the leading-order quantum correction is included. Finally, we numerically simulate absorption spectra of a highly anharmonic shifted Morse potential model. We find that, while finite quantization and the dissociation limit are captured with reasonable accuracy, there is a qualitative breakdown of the quasi-classical trajectory ensemble's ability to describe the vibronic line shape when the relative shift in Morse potentials becomes large. The work presented here provides clarity on the origin of unphysical negative features known to contaminate absorption spectra computed with quasi-classical trajectory ensembles.

9.
J Chem Theory Comput ; 17(1): 29-39, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33369406

RESUMEN

The partially linearized density matrix formalism for nonadiabatic dynamics is adapted to incorporate a classical external electromagentic field into the system Hamiltonian. This advancement encompasses the possibility of describing field-driven dynamics and computing a variety of linear and nonlinear spectroscopic signals beyond the perturbative limit. The capabilities of the developed approach are demonstrated on a simple two-state vibronic model coupled to a bath, for which we (a) perform an exhaustive search in the field parameter space for optimal state preparation and (b) compute time-resolved transient absorption spectroscopy to monitor the effect of different pulse shapes on measurable experimental signals. While no restrictions on the form of the field have to be assumed, we focus here on Gaussian shaped (linearly) chirped pulses.

10.
J Chem Phys ; 151(15): 154114, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640350

RESUMEN

A new approximate coherent state path integral approach, which enables accurate and efficient dynamical treatment of model Hamiltonians that incorporate excited electronic states of multiple chromophores that are coupled to discrete high frequency harmonic vibrational modes, is presented. The approach is based on the mapping Hamiltonian formalism for the electronic states together with semiclassical coherent state expressions for the forward and backward propagators describing the quantum bath modes. The density matrix dynamics is propagated in the full coherent state basis for the electronic mapping and discrete vibrational mode oscillators using ensembles of weighted trajectories. An effective scheme for projecting the ensemble onto selected vibronic basis states is presented enabling the evolution of the reduced system density matrix to be monitored as well as exploring the importance of selected vibronic relaxation pathways in the multichromophore system dynamics. The approach is demonstrated for simple model Hamiltonians, and we show how this coherent state density matrix propagation approach for high frequency discrete harmonic vibrational modes can be combined with partial linearized density matrix propagation to treat an additional continuum bath of low frequency environmental modes that could, in principle, include anharmonicity.

11.
J Chem Phys ; 148(18): 181102, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29764153

RESUMEN

The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.

12.
J Chem Theory Comput ; 14(2): 856-866, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29244497

RESUMEN

Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

13.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA