Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Free Radic Biol Med ; 205: 188-201, 2023 08 20.
Article En | MEDLINE | ID: mdl-37302617

Kidneys are pivotal organ in iron redistribution and can be severely damaged in the course of hemolysis. In our previous studies, we observed that induction of hypertension with angiotensin II (Ang II) combined with simvastatin administration results in a high mortality rate or the appearance of signs of kidney failure in heme oxygenase-1 knockout (HO-1 KO) mice. Here, we aimed to address the mechanisms underlying this effect, focusing on heme and iron metabolism. We show that HO-1 deficiency leads to iron accumulation in the renal cortex. Higher mortality of Ang II and simvastatin-treated HO-1 KO mice coincides with increased iron accumulation and the upregulation of mucin-1 in the proximal convoluted tubules. In vitro studies showed that mucin-1 hampers heme- and iron-related oxidative stress through the sialic acid residues. In parallel, knock-down of HO-1 induces the glutathione pathway in an NRF2-depedent manner, which likely protects against heme-induced toxicity. To sum up, we showed that heme degradation during heme overload is not solely dependent on HO-1 enzymatic activity, but can be modulated by the glutathione pathway. We also identified mucin-1 as a novel redox regulator. The results suggest that hypertensive patients with less active HMOX1 alleles may be at higher risk of kidney injury after statin treatment.


Heme Oxygenase-1 , Hypertension , Mice , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Angiotensin II/metabolism , Mucin-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Simvastatin/adverse effects , Simvastatin/metabolism , Kidney/metabolism , Iron/metabolism , Hypertension/chemically induced , Hypertension/genetics , Hypertension/metabolism , Heme/metabolism , Glutathione/metabolism
2.
Neurotox Res ; 41(4): 362-379, 2023 Aug.
Article En | MEDLINE | ID: mdl-37129835

Stroke and perinatal asphyxia have detrimental effects on neuronal cells, causing millions of deaths worldwide each year. Since currently available therapies are insufficient, there is an urgent need for novel neuroprotective strategies to address the effects of cerebrovascular accidents. One such recent approach is based on the neuroprotective properties of estrogen receptors (ERs). However, activation of ERs by estrogens may contribute to the development of endometriosis or hormone-dependent cancers. Therefore, in this study, we utilized ospemifene, a novel selective estrogen receptor modulator (SERM) already used in dyspareunia treatment. Here, we demonstrated that posttreatment with ospemifene in primary neocortical cell cultures subjected to 18 h of hypoxia and/or ischemia followed by 6 h of reoxygenation has robust neuroprotective potential. Ospemifene partially reverses hypoxia- and ischemia-induced changes in LDH release, the degree of neurodegeneration, and metabolic activity. The mechanism of the neuroprotective actions of ospemifene involves the inhibition of apoptosis since the compound decreases caspase-3 overactivity during hypoxia and enhances mitochondrial membrane potential during ischemia. Moreover, in both models, ospemifene decreased the levels of the proapoptotic proteins BAX, FAS, FASL, and GSK3ß while increasing the level of the antiapoptotic protein BCL2. Silencing of specific ERs showed that the neuroprotective actions of ospemifene are mediated mainly via ESR1 (during hypoxia and ischemia) and GPER1 (during hypoxia), which is supported by ospemifene-evoked increases in ESR1 protein levels in hypoxic and ischemic neurons. The results identify ospemifene as a promising neuroprotectant, which in the future may be used to treat injuries due to brain hypoxia/ischemia.


Receptors, Estrogen , Stroke , Pregnancy , Female , Humans , Receptors, Estrogen/metabolism , Hypoxia/metabolism , Neurons , Apoptosis , Stroke/metabolism , Ischemia/metabolism
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36835454

Nuclear- and membrane-initiated estrogen signaling cooperate to orchestrate the pleiotropic effects of estrogens. Classical estrogen receptors (ERs) act transcriptionally and govern the vast majority of hormonal effects, whereas membrane ERs (mERs) enable acute modulation of estrogenic signaling and have recently been shown to exert strong neuroprotective capacity without the negative side effects associated with nuclear ER activity. In recent years, GPER1 was the most extensively characterized mER. Despite triggering neuroprotective effects, cognitive improvements, and vascular protective effects and maintaining metabolic homeostasis, GPER1 has become the subject of controversy, particularly due to its participation in tumorigenesis. This is why interest has recently turned toward non-GPER-dependent mERs, namely, mERα and mERß. According to available data, non-GPER-dependent mERs elicit protective effects against brain damage, synaptic plasticity impairment, memory and cognitive dysfunctions, metabolic imbalance, and vascular insufficiency. We postulate that these properties are emerging platforms for designing new therapeutics that may be used in the treatment of stroke and neurodegenerative diseases. Since mERs have the ability to interfere with noncoding RNAs and to regulate the translational status of brain tissue by affecting histones, non-GPER-dependent mERs appear to be attractive targets for modern pharmacotherapy for nervous system diseases.


Central Nervous System Diseases , Molecular Targeted Therapy , Receptors, Estrogen , Brain/metabolism , Receptors, Estrogen/metabolism , Signal Transduction , Central Nervous System Diseases/drug therapy
4.
Mol Neurobiol ; 60(2): 576-595, 2023 Feb.
Article En | MEDLINE | ID: mdl-36324052

Amorfrutin B is a selective modulator of the PPARγ receptor, which has recently been identified as an effective neuroprotective compound that protects brain neurons from hypoxic and ischemic damage. Our study demonstrated for the first time that a 6-h delayed post-treatment with amorfrutin B prevented hypoxia/ischemia-induced neuronal apoptosis in terms of the loss of mitochondrial membrane potential, heterochromatin foci formation, and expression of specific genes and proteins. The expression of all studied apoptosis-related factors was decreased in response to amorfrutin B, both during hypoxia and ischemia, except for the expression of anti-apoptotic BCL2, which was increased. After post-treatment with amorfrutin B, the methylation rate of the pro-apoptotic Bax gene was inversely correlated with the protein level, which explained the decrease in the BAX/BCL2 ratio as a result of Bax hypermethylation. The mechanisms of the protective action of amorfrutin B also involved the inhibition of autophagy, as evidenced by diminished autophagolysosome formation and the loss of neuroprotective properties of amorfrutin B after the silencing of Becn1 and/or Atg7. Although post-treatment with amorfrutin B reduced the expression levels of Becn1, Nup62, and Ambra1 during hypoxia, it stimulated Atg5 and the protein levels of MAP1LC3B and AMBRA1 during ischemia, supporting the ambiguous role of autophagy in the development of brain pathologies. Furthermore, amorfrutin B affected the expression levels of apoptosis-focused and autophagy-related miRNAs, and many of these miRNAs were oppositely regulated by amorfrutin B and hypoxia/ischemia. The results strongly support the position of amorfrutin B among the most promising anti-stroke and wide-window therapeutics.


Hypoxia-Ischemia, Brain , MicroRNAs , Mice , Animals , MicroRNAs/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis , Autophagy , Ischemia/metabolism , Hypoxia/metabolism , Brain/metabolism , DNA Methylation , Neurons/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/metabolism
5.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article En | MEDLINE | ID: mdl-34884933

Triclocarban is a highly effective and broadly used antimicrobial agent. Humans are continually exposed to triclocarban, but the safety of prenatal exposure to triclocarban in the context of neurodevelopment remains unknown. In this study, we demonstrated for the first time that mice that had been prenatally exposed to environmentally relevant doses of triclocarban had impaired estrogen receptor 1 (ESR1) signaling in the brain. These mice displayed decreased mRNA and protein expression levels of ESR1 as well as hypermethylation of the Esr1 gene in the cerebral cortex. Prenatal exposure to triclocarban also diminished the mRNA expression of Esr2, Gper1, Ahr, Arnt, Cyp19a1, Cyp1a1, and Atg7, and the protein levels of CAR, ARNT, and MAP1LC3AB in female brains and decreased the protein levels of BCL2, ARNT, and MAP1LC3AB in male brains. In addition, exposure to triclocarban caused sex-specific alterations in the methylation levels of global DNA and estrogen receptor genes. Microarray and enrichment analyses showed that, in males, triclocarban dysregulated mainly neurogenesis-related genes, whereas, in females, the compound dysregulated mainly neurotransmitter-related genes. In conclusion, our data identified triclocarban as a neurodevelopmental risk factor that particularly targets ESR1, affects apoptosis and autophagy, and in sex-specific ways disrupts the epigenetic status of brain tissue and dysregulates the postnatal expression of neurogenesis- and neurotransmitter-related genes.


Brain/drug effects , Carbanilides/toxicity , Estrogen Receptor alpha/metabolism , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects , Animals , Anti-Infective Agents, Local/toxicity , Blood-Brain Barrier/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Female , Gene Expression Regulation/drug effects , Male , Mice , Neurogenesis/genetics , Neurotransmitter Agents/genetics , Neurotransmitter Agents/metabolism , Pregnancy , Sex Factors , Signal Transduction/drug effects
6.
Biomedicines ; 9(8)2021 Jul 21.
Article En | MEDLINE | ID: mdl-34440058

In this study, we demonstrate for the first time that amorfrutin B, a selective modulator of peroxisome proliferator-activated receptor gamma-PPARγ, can protect brain neurons from hypoxia- and ischemia-induced degeneration when applied at 6 h post-treatment in primary cultures. The neuroprotective effect of amorfrutin B suggests that it promotes mitochondrial integrity and is capable of inhibiting reactive oxygen species-ROS activity and ROS-mediated DNA damage. PPARγ antagonist and Pparg mRNA silencing abolished the neuroprotective effect of amorfrutin B, which points to agonistic action of the compound on the respective receptor. Interestingly, amorfrutin B stimulated the methylation of the Pparg gene, both during hypoxia and ischemia. Amorfrutin B also increased the protein level of PPARγ during hypoxia but decreased the mRNA and protein levels of PPARγ during ischemia. Under ischemic conditions, amorfrutin B-evoked hypermethylation of the Pparg gene is in line with the decrease in the mRNA and protein expression of PPARγ. However, under hypoxic conditions, amorfrutin B-dependent hypermethylation of the Pparg gene does not explain the amorfrutin B-dependent increase in receptor protein expression, which suggests other regulatory mechanisms. Other epigenetic parameters, such as HAT and/or sirtuins activities, were affected by amorfrutin B under hypoxic and ischemic conditions. These properties position the compound among the most promising anti-stroke and wide-window therapeutics.

7.
Neurotox Res ; 38(4): 957-966, 2020 Dec.
Article En | MEDLINE | ID: mdl-33025361

Alzheimer's disease (AD) is a multifactorial and severe neurodegenerative disorder characterized by progressive memory decline, the presence of Aß plaques and tau tangles, brain atrophy, and neuronal loss. Available therapies provide moderate symptomatic relief but do not alter disease progression. This study demonstrated that PaPE-1, which has been designed to selectively activate non-nuclear estrogen receptors (ERs), has anti-AD capacity, as evidenced in a cellular model of the disease. In this model, the treatment of mouse neocortical neurons with Aß (5 and 10 µM) induced apoptosis (loss of mitochondrial membrane potential, activation of caspase-3, induction of apoptosis-related genes and proteins) accompanied by increases in levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as reduced cell viability. Following 24 h of exposure, PaPE-1 inhibited Aß-evoked effects, as shown by reduced parameters of neurotoxicity, oxidative stress, and apoptosis. Because PaPE-1 downregulated Aß-induced Fas/FAS expression but upregulated that of Aß-induced FasL, the role of PaPE-1 in controlling the external apoptotic pathway is controversial. However, PaPE-1 normalized Aß-induced loss of mitochondrial membrane potential and restored the BAX/BCL2 ratio, suggesting that the anti-AD capacity of PaPE-1 particularly relies on inhibition of the mitochondrial apoptotic pathway. These data provide new evidence for an anti-AD strategy that utilizes the selective targeting of non-nuclear ERs with PaPE-1.


Alzheimer Disease/metabolism , Drug Delivery Systems/methods , Phosphatidylethanolamines/administration & dosage , Receptors, Estrogen/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/toxicity , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Mice , Neocortex/drug effects , Neocortex/metabolism , Neurons/drug effects , Neurons/metabolism , Peptide Fragments/toxicity
8.
Sci Total Environ ; 742: 140599, 2020 Nov 10.
Article En | MEDLINE | ID: mdl-32721735

DDE (dichlorodiphenyldichloroethylene) is an environmental metabolite of the pesticide DDT, which is still present in the environment, and its insecticidal properties are used to fight malaria and the Zika virus disease. We showed for the first time that the neurotoxic effects of DDE involve autophagy, as demonstrated by elevated levels of Becn1, Map1lc3a/MAP1LC3A, Map1lc3b, and Nup62/NUP62 and an increase in autophagosome formation. The suggestion that the aryl hydrocarbon receptor (AHR) and the constitutive androstane receptor (CAR) are involved in the neurotoxic effect of DDE was supported by increases in the mRNA and protein expression of these receptors, as detected by qPCR, ELISA, immunofluorescence labeling and confocal microscopy. Selective antagonists of the receptors, including alpha-naphthoflavone, CH223191, and CINPA 1, inhibited p,p'-DDE- and o,p'-DDE-induced LDH release and caspase-3 activity, while specific siRNAs (Ahr and Car siRNA) reduced the levels of p,p'-DDE- and o,p'-DDE-induced autophagosome formation. Although the neurotoxic effects of DDE were isomer independent, the mechanisms of p,p'- and o,p'-DDE were isomer specific. Therefore, we identified previously unknown mechanisms of the neurotoxic actions of DDE that, in addition to inducing apoptosis, stimulate autophagy in mouse neocortical cultures and induce AHR and CAR signaling.


Autophagy , Zika Virus Infection , Zika Virus , Animals , Constitutive Androstane Receptor , DDT , Dichlorodiphenyl Dichloroethylene , Mice , Neurons , Receptors, Aryl Hydrocarbon , Receptors, Cytoplasmic and Nuclear
...