Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(9): 1286-1294, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592094

RESUMEN

Sister chromatid cohesion, established during replication by the ring-shaped multiprotein complex cohesin, is essential for faithful chromosome segregation. Replisome-associated proteins are required to generate cohesion by two independent pathways. One mediates conversion of cohesins bound to unreplicated DNA ahead of replication forks into cohesive entities behind them, while the second promotes cohesin de novo loading onto newly replicated DNA. The latter process depends on the cohesin loader Scc2 (NIPBL in vertebrates) and the alternative PCNA loader CTF18-RFC. However, the mechanism of de novo cohesin loading during replication is unknown. Here we show that PCNA physically recruits the yeast cohesin loader Scc2 via its C-terminal PCNA-interacting protein motif. Binding to PCNA is crucial, as the scc2-pip mutant deficient in Scc2-PCNA interaction is defective in cohesion when combined with replisome mutants of the cohesin conversion pathway. Importantly, the role of NIPBL recruitment to PCNA for cohesion generation is conserved in vertebrate cells.


Asunto(s)
Cromátides , Segregación Cromosómica , Animales , Antígeno Nuclear de Célula en Proliferación/genética , Cromátides/genética , Proteínas de Ciclo Celular/genética , Saccharomyces cerevisiae/genética , Cohesinas
2.
Genes Dev ; 35(19-20): 1368-1382, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503989

RESUMEN

The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.


Asunto(s)
Cromátides , Proteínas Cromosómicas no Histona , Animales , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Vertebrados/genética , Cohesinas
3.
Cell Rep ; 36(5): 109485, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348159

RESUMEN

Structural maintenance of chromosomes (SMCs) complexes, cohesin, condensin, and Smc5/6, are essential for viability and participate in multiple processes, including sister chromatid cohesion, chromosome condensation, and DNA repair. Here we show that SUMO chains target all three SMC complexes and are antagonized by the SUMO protease Ulp2 to prevent their turnover. We uncover that the essential role of the cohesin-associated subunit Pds5 is to counteract SUMO chains jointly with Ulp2. Importantly, fusion of Ulp2 to kleisin Scc1 supports viability of PDS5 null cells and protects cohesin from proteasomal degradation mediated by the SUMO-targeted ubiquitin ligase Slx5/Slx8. The lethality of PDS5-deleted cells can also be bypassed by simultaneous loss of the proliferating cell nuclear antigen (PCNA) unloader, Elg1, and the cohesin releaser, Wpl1, but only when Ulp2 is functional. Condensin and Smc5/6 complex are similarly guarded by Ulp2 against unscheduled SUMO chain assembly, which we propose to time the availability of SMC complexes on chromatin.


Asunto(s)
Endopeptidasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Genes Supresores , Mutación/genética , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación , Cohesinas
4.
Mol Cell ; 76(4): 632-645.e6, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31519521

RESUMEN

Similar to ubiquitin, SUMO forms chains, but the identity of SUMO-chain-modified factors and the purpose of this modification remain largely unknown. Here, we identify the budding yeast SUMO protease Ulp2, able to disassemble SUMO chains, as a DDK interactor enriched at replication origins that promotes DNA replication initiation. Replication-engaged DDK is SUMOylated on chromatin, becoming a degradation-prone substrate when Ulp2 no longer protects it against SUMO chain assembly. Specifically, SUMO chains channel DDK for SUMO-targeted ubiquitin ligase Slx5/Slx8-mediated and Cdc48 segregase-assisted proteasomal degradation. Importantly, the SUMOylation-defective ddk-KR mutant rescues inefficient replication onset and MCM activation in cells lacking Ulp2, suggesting that SUMO chains time DDK degradation. Using two unbiased proteomic approaches, we further identify subunits of the MCM helicase and other factors as SUMO-chain-modified degradation-prone substrates of Ulp2 and Slx5/Slx8. We thus propose SUMO-chain/Ulp2-protease-regulated proteasomal degradation as a mechanism that times the availability of functionally engaged SUMO-modified protein pools during replication and beyond.


Asunto(s)
Replicación del ADN , ADN de Hongos/biosíntesis , Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sumoilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , Endopeptidasas/genética , Regulación Fúngica de la Expresión Génica , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
5.
J Biol Chem ; 293(2): 599-609, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29183993

RESUMEN

Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte Biológico/fisiología , Microscopía Fluorescente , Proteostasis , Saccharomyces cerevisiae/metabolismo , Sumoilación
6.
Methods Mol Biol ; 1475: 219-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631809

RESUMEN

Protein modification by conjugation to the ubiquitin-related protein SUMO (SUMOylation) regulates numerous cellular functions and is reversible. However, unlike typical posttranslational modifications, SUMOylation often targets and regulates proteins of functionally and physically linked protein groups, rather than individual proteins. Functional studies of protein-group SUMOylation are thus particularly challenging, as they require the identification of ideally all members of a modified protein group. Here, we describe mass spectrometric approaches to detect SUMOylated protein groups in Saccharomyces cerevisiae, yet the protocols can be readily adapted for studies of SUMOylation in mammalian cells.


Asunto(s)
Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Cromatografía de Afinidad , Marcaje Isotópico , Espectrometría de Masas , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Especificidad por Sustrato , Sumoilación
7.
Curr Opin Cell Biol ; 40: 137-144, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27060551

RESUMEN

Accurate chromosomal DNA replication is fundamental for optimal cellular function and genome integrity. Replication perturbations activate DNA damage tolerance pathways, which are crucial to complete genome duplication as well as to prevent formation of deleterious double strand breaks. Cells use two general strategies to tolerate lesions: recombination to a homologous template, and trans-lesion synthesis with specialized polymerases. While key players of these processes have been outlined, much less is known on their choreography and regulation. Recent advances have uncovered principles by which DNA damage tolerance is regulated locally and temporally - in relation to replication timing and cell cycle stage -, and are beginning to elucidate the DNA dynamics that mediate lesion tolerance and influence chromosome structure during replication.


Asunto(s)
Reparación del ADN , Células Eucariotas/metabolismo , Animales , Daño del ADN , Replicación del ADN , Humanos
8.
Autophagy ; 10(12): 2381-2, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25470352

RESUMEN

Selective ubiquitin-dependent autophagy mediates the disposal of superfluous cellular structures and clears cells of protein aggregates such as polyQ proteins linked to Huntington disease. Crucial selectivity factors of this pathway are ubiquitin-Atg8 receptors such as human SQSTM1/p62, which recognize ubiquitinated cargoes and deliver them to phagophores for degradation. Contrasting previous beliefs, we recently showed that ubiquitin-dependent autophagy is not restricted to higher eukaryotes but also exists in yeast with Cue5, harboring a ubiquitin-binding CUE domain, being a ubiquitin-Atg8 receptor. Notably, the human CUE domain protein TOLLIP is functionally similar to yeast Cue5, indicating that Cue5/TOLLIP (CUET) proteins represent a new and conserved class of autophagy receptors. Remarkably, both Cue5 in yeast and TOLLIP in human cells mediate efficient clearance of aggregation-prone polyQ proteins derived from human HTT/huntingtin. Indeed, TOLLIP is potentially more potent in polyQ clearance than SQSTM1/p62 in HeLa cells, suggesting that TOLLIP, also implicated in innate immunity, may be significant for human health and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos
9.
Cell ; 158(3): 549-63, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25042851

RESUMEN

Selective ubiquitin-dependent autophagy plays a pivotal role in the elimination of protein aggregates, assemblies, or organelles and counteracts the cytotoxicity of proteins linked to neurodegenerative diseases. Following substrate ubiquitylation, the cargo is delivered to autophagosomes involving adaptors like human p62 that bind ubiquitin and the autophagosomal ubiquitin-like protein Atg8/LC3; however, whether similar pathways exist in lower eukaryotes remained unclear. Here, we identify by a screen in yeast a new class of ubiquitin-Atg8 adaptors termed CUET proteins, comprising the ubiquitin-binding CUE-domain protein Cue5 from yeast and its human homolog Tollip. Cue5 collaborates with Rsp5 ubiquitin ligase, and the corresponding yeast mutants accumulate aggregation-prone proteins and are vulnerable to polyQ protein expression. Similarly, Tollip depletion causes cytotoxicity toward polyQ proteins, whereas Tollip overexpression clears human cells from Huntington's disease-linked polyQ proteins by autophagy. We thus propose that CUET proteins play a critical and ancient role in autophagic clearance of cytotoxic protein aggregates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia , Humanos , Enfermedad de Huntington/metabolismo , Péptidos/metabolismo , Ubiquitinación
10.
EMBO J ; 33(4): 327-40, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24473148

RESUMEN

DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.


Asunto(s)
Cromosomas Fúngicos/ultraestructura , Daño del ADN , ADN de Hongos/genética , Proteínas del Grupo de Alta Movilidad/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Cromátides/genética , Cromátides/ultraestructura , Cromatina/ultraestructura , Cromosomas Fúngicos/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Cruciforme , ADN de Hongos/efectos de los fármacos , Inestabilidad Genómica , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Annu Rev Genet ; 47: 167-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24016193

RESUMEN

Reversible modification of proteins by SUMO (small ubiquitin-like modifier) affects a large number of cellular processes. In striking contrast to the related ubiquitin pathway, only a few enzymes participate in the SUMO system, although this pathway has numerous substrates as well. Emerging evidence suggests that SUMOylation frequently targets entire groups of physically interacting proteins rather than individual proteins. Protein-group SUMOylation appears to be triggered by recruitment of SUMO ligases to preassembled protein complexes. Because SUMOylation typically affects groups of proteins that bear SUMO-interaction motifs (SIMs), protein-group SUMOylation may foster physical interactions between proteins through multiple SUMO-SIM interactions. Individual SUMO modifications may act redundantly or additively, yet they may mediate dedicated functions as well. In this review, we focus on the unorthodox principles of this pathway and give examples for SUMO-controlled nuclear activities. We propose that collective SUMOylation is typical for nuclear assemblies and argue that SUMO serves as a distinguishing mark for functionally engaged protein fractions.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas/metabolismo , Sumoilación/fisiología , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/ultraestructura , Reparación del ADN/fisiología , Enzimas/metabolismo , Humanos , Lisina/metabolismo , Modelos Biológicos , Complejos Multiproteicos , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Mapeo de Interacción de Proteínas , Proteómica , Ribosomas/metabolismo , Especificidad por Sustrato , Sumoilación/genética , Telómero/metabolismo , Homeostasis del Telómero/fisiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina
12.
Cell ; 151(4): 807-820, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23122649

RESUMEN

Protein modification by SUMO affects a wide range of protein substrates. Surprisingly, although SUMO pathway mutants display strong phenotypes, the function of individual SUMO modifications is often enigmatic, and SUMOylation-defective mutants commonly lack notable phenotypes. Here, we use DNA double-strand break repair as an example and show that DNA damage triggers a SUMOylation wave, leading to simultaneous multisite modifications of several repair proteins of the same pathway. Catalyzed by a DNA-bound SUMO ligase and triggered by single-stranded DNA, SUMOylation stabilizes physical interactions between the proteins. Notably, only wholesale elimination of SUMOylation of several repair proteins significantly affects the homologous recombination pathway by considerably slowing down DNA repair. Thus, SUMO acts synergistically on several proteins, and individual modifications only add up to efficient repair. We propose that SUMOylation may thus often target a protein group rather than individual proteins, whereas localized modification enzymes and highly specific triggers ensure specificity.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/metabolismo , Sumoilación , Roturas del ADN de Cadena Simple , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nat Nanotechnol ; 6(9): 594-602, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822252

RESUMEN

The tumour microenvironment regulates tumour progression and the spread of cancer in the body. Targeting the stromal cells that surround cancer cells could, therefore, improve the effectiveness of existing cancer treatments. Here, we show that magnetic nanoparticle clusters encapsulated inside a liposome can, under the influence of an external magnet, target both the tumour and its microenvironment. We use the outstanding T2 contrast properties (r2=573-1,286 s(-1) mM(-1)) of these ferri-liposomes, which are ∼95 nm in diameter, to non-invasively monitor drug delivery in vivo. We also visualize the targeting of the tumour microenvironment by the drug-loaded ferri-liposomes and the uptake of a model probe by cells. Furthermore, we used the ferri-liposomes to deliver a cathepsin protease inhibitor to a mammary tumour and its microenvironment in a mouse, which substantially reduced the size of the tumour compared with systemic delivery of the same drug.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Imanes/química , Nanopartículas/química , Animales , Células Cultivadas , Humanos , Liposomas/ultraestructura , Imagen por Resonancia Magnética , Ratones , Nanopartículas/ultraestructura , Neoplasias/tratamiento farmacológico , Células Tumorales Cultivadas , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA