Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 24(8): 3218-3227, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659661

RESUMEN

One possible pathway toward reducing the cost of III-V solar cells is to remove them from their growth substrate by spalling fracture, and then reuse the substrate for the growth of multiple cells. Here we consider the growth of III-V cells on spalled GaAs(100) substrates, which typically have faceted surfaces after spalling. To facilitate the growth of high-quality cells, these faceted surfaces should be smoothed prior to cell growth. In this study, we show that these surfaces can be smoothed during organometallic vapor-phase epitaxy growth, but the choice of epilayer material and modification of the various surfaces by impurities/dopants greatly impacts whether or not the surface becomes smooth, and how rapidly the smoothing occurs. Representative examples are presented along with a discussion of the underlying growth processes. Although this work was motivated by solar cell growth, the methods are generally applicable to the growth of any III-V device on a nonplanar substrate.

2.
ACS Omega ; 8(47): 45088-45095, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046304

RESUMEN

We couple halide vapor phase epitaxy (HVPE) growth of III-V materials with liftoff from an ultrathin carbon release layer to address two significant cost components in III-V device - epitaxial growth and substrate reusability. We investigate nucleation and growth of GaAs layers by HVPE on a thin amorphous carbon layer that can be mechanically exfoliated, leaving the substrate available for reuse. We study nucleation as a function of carbon layer thickness and growth rate and find island-like nucleation. We then study various GaAs growth conditions, including V/III ratio, growth temperature, and growth rate in an effort to minimize film roughness. High growth rates and thicker films lead to drastically smoother surfaces with reduced threading dislocation density. Finally, we grow an initial photovoltaic device on a carbon release layer that has an efficiency of 7.2%. The findings of this work show that HVPE growth is compatible with a carbon release layer and presents a path toward lowering the cost of photovoltaics with high throughput growth and substrate reuse.

3.
ACS Omega ; 7(28): 24353-24364, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874259

RESUMEN

The high cost of substrates for III-V growth can be cost limiting for technologies that require large semiconductor areas. Thus, being able to separate device layers and reuse the original substrate is highly desirable, but existing techniques to lift a film from a substrate have substantial drawbacks. This work discusses some of the complexities with the growth of a water-soluble, alkali halide salt thin film between a III-V substrate and overlayer. Much of the difficulty stems from the growth of GaAs on an actively decomposing NaCl surface at elevated temperatures. Interestingly, the presence of an in situ electron beam incident on the NaCl surface, prior to and during GaAs deposition, affects the crystallinity and morphology of the III-V overlayer. Here, we investigate a wide range of growth temperatures and the timing of the impinging flux of both elemental sources and high energy electrons at different points during the growth. We show that an assortment of morphologies (discrete islands, porous material, and fully dense layers with sharp interfaces) and crystallinity (amorphous, crystalline, and highly textured) occur depending on the specific growth conditions, driven largely by changes in GaAs nucleation which is greatly affected by the presence of the reflection high energy electron diffraction beam.

4.
ACS Appl Mater Interfaces ; 12(37): 41471-41476, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32820889

RESUMEN

We introduce cracked film lithography (CFL) as a way to reduce the cost of III-V photovoltaics (PV). We spin-coat nanoparticle suspensions onto GaAs thin-film device stacks. The suspensions dry in seconds, forming crack networks that we use as templates through which to electroplate the solar cells' front metal grids. For the first time, we show that heating the crack template allows it to flow and refill cracks, which decreases crack footprint and improves final grid transmittance. We demonstrate 24.7%-efficient single-junction GaAs solar cells using vacuum-free CFL grids. These devices are only 1.7% (absolute) less efficient than the baseline grids patterned by photolithography with the loss mostly resulting from the reduced transparency of the CFL pattern. Additional optimization could decrease this difference. Initial cost modeling suggests that CFL is more scalable than photolithography: In particular, CFL's lower materials and equipment costs could greatly reduce the levelized cost of electricity of III-V PV at scale, a potential step toward terrestrial deployment.

5.
Microsc Microanal ; 25(5): 1160-1166, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31475657

RESUMEN

Single-crystalline gallium arsenide (GaAs) grown by various techniques can exhibit hillock defects on the surface when sub-optimal growth conditions are employed. The defects act as nonradiative recombination centers and limit solar cell performance. In this paper, we applied near-field transport imaging to study hillock defects in a GaAs thin film. On the same defects, we also performed near-field cathodoluminescence, standard cathodoluminescence, electron-backscattered diffraction, transmission electron microscopy, and energy-dispersive X-ray spectrometry. We found that the luminescence intensity around the hillock area is two orders of magnitude lower than on the area without hillock defects in the millimeter region, and the excess carrier diffusion length is degraded by at least a factor of five with significant local variation. The optical and transport properties are affected over a significantly larger region than the observed topography and crystallographic and chemical compositions associated with the defect.

6.
Nat Commun ; 10(1): 4070, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481675

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Commun ; 10(1): 3361, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350402

RESUMEN

We report gallium arsenide (GaAs) growth rates exceeding 300 µm h-1 using dynamic hydride vapor phase epitaxy. We achieved these rates by maximizing the gallium to gallium monochloride conversion efficiency, and by utilizing a mass-transport-limited growth regime with fast kinetics. We also demonstrate gallium indium phosphide growth at rates exceeding 200 µm h-1 using similar growth conditions. We grew GaAs solar cell devices by incorporating the high growth rate of GaAs and evaluated its material quality at these high rates. Solar cell growth rates ranged from 35 to 309 µm h-1 with open circuit voltages ranging from 1.04 to 1.07 V. The best devices exceeded 25% efficiency under the AM1.5 G solar spectrum. The high open-circuit voltages indicate that high material quality can be maintained at these extremely high growth rates. These results have strong implications toward lowering the deposition cost of III-V materials potentially enabling the deposition of high efficiency devices in mere seconds.

8.
Adv Mater ; 25(5): 738-42, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23108727

RESUMEN

The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz.


Asunto(s)
Amplificadores Electrónicos , Arsenicales/química , Galio/química , Indio/química , Semiconductores , Aleaciones/química , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Marcadores de Spin , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...