Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
ACS Nano ; 18(15): 10464-10484, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38578701

Mammalian cells release a heterogeneous array of extracellular vesicles (EVs) that contribute to intercellular communication by means of the cargo that they carry. To resolve EV heterogeneity and determine if cargo is partitioned into select EV populations, we developed a method named "EV Fingerprinting" that discerns distinct vesicle populations using dimensional reduction of multiparametric data collected by quantitative single-EV flow cytometry. EV populations were found to be discernible by a combination of membrane order and EV size, both of which were obtained through multiparametric analysis of fluorescent features from the lipophilic dye Di-8-ANEPPS incorporated into the lipid bilayer. Molecular perturbation of EV secretion and biogenesis through respective ablation of the small GTPase Rab27a and overexpression of the EV-associated tetraspanin CD63 revealed distinct and selective alterations in EV populations, as well as cargo distribution. While Rab27a disproportionately affects all small EV populations with high membrane order, the overexpression of CD63 selectively increased the production of one small EV population of intermediate membrane order. Multiplexing experiments subsequently revealed that EV cargos have a distinct, nonrandom distribution with CD63 and CD81 selectively partitioning into smaller vs larger EVs, respectively. These studies not only present a method to probe EV biogenesis but also reveal how the selective partitioning of cargo contributes to EV heterogeneity.


Extracellular Vesicles , Animals , Flow Cytometry , Lipid Bilayers , Cell Communication , Mammals
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L517-L523, 2024 May 01.
Article En | MEDLINE | ID: mdl-38469633

Extracellular vesicle (EV) biology in neonatal lung development and disease is a rapidly growing area of investigation. Although EV research in the neonatal population lags behind EV research in adult lung diseases, recent discoveries demonstrate promise in furthering our understanding of the pathophysiology of bronchopulmonary dysplasia and the potential use of EVs in the clinical setting, as both biomarkers and therapeutic agents. This review article explores some of the recent advances in this field and our evolving knowledge of the role of EVs in bronchopulmonary dysplasia.


Bronchopulmonary Dysplasia , Extracellular Vesicles , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/physiopathology , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Animals , Infant, Newborn , Lung/pathology , Lung/metabolism , Biomarkers/metabolism
3.
Cell Rep ; 42(8): 112928, 2023 08 29.
Article En | MEDLINE | ID: mdl-37542720

Identifying molecular circuits that control adipose tissue macrophage (ATM) function is necessary to understand how ATMs contribute to tissue homeostasis and obesity-induced insulin resistance. In this study, we find that mice with a myeloid-specific knockout of the miR-23-27-24 clusters of microRNAs (miRNAs) gain less weight on a high-fat diet but exhibit worsened glucose and insulin tolerance. Analysis of ATMs from these mice shows selectively reduced numbers and proliferation of a recently reported subset of lipid-associated CD9+Trem2+ ATMs (lipid-associated macrophages [LAMs]). Leveraging the role of miRNAs to control networks of genes, we use RNA sequencing (RNA-seq), functional screens, and biochemical assays to identify candidate target transcripts that regulate proliferation-associated signaling. We determine that miR-23 directly targets the mRNA of Eif4ebp2, a gene that restricts protein synthesis and proliferation in macrophages. Altogether, our study demonstrates that control of proliferation of a protective subset of LAMs by noncoding RNAs contributes to protection against diet-induced obesity metabolic dysfunction.


Insulin Resistance , MicroRNAs , Mice , Animals , Adipose Tissue/metabolism , Obesity/genetics , Obesity/metabolism , Macrophages/metabolism , Insulin Resistance/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Diet, High-Fat , Lipids , Cell Proliferation , Mice, Inbred C57BL , Inflammation/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
4.
J Immunol ; 210(4): 359-368, 2023 02 15.
Article En | MEDLINE | ID: mdl-36724439

Macrophages are sentinels of the innate immune system that maintain tissue homeostasis and contribute to inflammatory responses. Their broad scope of action depends on both functional heterogeneity and plasticity. Small noncoding RNAs called microRNAs (miRNAs) contribute to macrophage function as post-transcriptional inhibitors of target gene networks. Genetic and pharmacologic studies have uncovered genes regulated by miRNAs that control macrophage cellular programming and macrophage-driven pathology. miRNAs control proinflammatory M1-like activation, immunoregulatory M2-like macrophage activation, and emerging macrophage functions in metabolic disease and innate immune memory. Understanding the gene networks regulated by individual miRNAs enhances our understanding of the spectrum of macrophage function at steady state and during responses to injury or pathogen invasion, with the potential to develop miRNA-based therapies. This review aims to consolidate past and current studies investigating the complexity of the miRNA interactome to provide the reader with a mechanistic view of how miRNAs shape macrophage behavior.


MicroRNAs , Macrophages , Gene Regulatory Networks , Macrophage Activation/genetics
5.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L385-L392, 2023 03 01.
Article En | MEDLINE | ID: mdl-36719083

Extracellular vesicles (EVs) are secreted lipid-enclosed particles that have emerged as potential biomarkers and therapeutic agents in lung disease, including bronchopulmonary dysplasia (BPD), a leading complication of preterm birth. Many unanswered questions remain about the content and cargo of EVs in premature infants and their role in lung development. To characterize EVs during human lung development, tracheal aspirates were collected from premature neonates between 22 and 35 wk gestational age and analyzed via nanoparticle tracking analysis, electron microscopy, and bead-based flow cytometry. EVs were detectable across late canalicular through saccular stages of lung development, demonstrating larger sizes earlier in gestation. EVs contained an abundance of the EV-enriched tetraspanins CD9, CD63, and CD81, as well as epithelial cell and immune cell markers. Increases in select surface proteins (CD24 and CD14) on EVs were associated with gestational age and with the risk of BPD. Finally, query of expression data obtained from epithelial cells in a single-cell atlas of murine lung development found that epithelial EV marker expression also changes with developmental time. Together, these data demonstrate an association between EV profile and lung development and provide a foundation for future functional classification of EVs, with the goal of determining their role in cell signaling during development and harnessing their potential as a new therapeutic target in BPD.


Bronchopulmonary Dysplasia , Extracellular Vesicles , Premature Birth , Female , Humans , Infant, Newborn , Animals , Mice , Infant, Premature , Premature Birth/metabolism , Extracellular Vesicles/metabolism , Bronchopulmonary Dysplasia/metabolism , Lung
6.
Proc Natl Acad Sci U S A ; 120(1): e2214874120, 2023 01 03.
Article En | MEDLINE | ID: mdl-36574710

Adequate mass and function of adipose tissues (ATs) play essential roles in preventing metabolic perturbations. The pathological reduction of ATs in lipodystrophy leads to an array of metabolic diseases. Understanding the underlying mechanisms may benefit the development of effective therapies. Several cellular processes, including autophagy and vesicle trafficking, function collectively to maintain AT homeostasis. Here, we investigated the impact of adipocyte-specific deletion of the lipid kinase phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) on AT homeostasis and systemic metabolism in mice. We report that PIK3C3 functions in all ATs and that its absence disturbs adipocyte autophagy and hinders adipocyte differentiation, survival, and function with differential effects on brown and white ATs. These abnormalities cause loss of white ATs, whitening followed by loss of brown ATs, and impaired "browning" of white ATs. Consequently, mice exhibit compromised thermogenic capacity and develop dyslipidemia, hepatic steatosis, insulin resistance, and type 2 diabetes. While these effects of PIK3C3 largely contrast previous findings with the autophagy-related (ATG) protein ATG7 in adipocytes, mice with a combined deficiency in both factors reveal a dominant role of the PIK3C3-deficient phenotype. We have also found that dietary lipid excess exacerbates AT pathologies caused by PIK3C3 deficiency. Surprisingly, glucose tolerance is spared in adipocyte-specific PIK3C3-deficient mice, a phenotype that is more evident during dietary lipid excess. These findings reveal a crucial yet complex role for PIK3C3 in ATs, with potential therapeutic implications.


Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Lipids , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism
7.
Immunol Rev ; 304(1): 5-9, 2021 11.
Article En | MEDLINE | ID: mdl-34816450
8.
Cell Commun Signal ; 19(1): 104, 2021 10 16.
Article En | MEDLINE | ID: mdl-34656117

Intercellular communication is a critical process that ensures cooperation between distinct cell types and maintains homeostasis. EVs, which were initially described as cellular debris and devoid of biological function, are now recognized as key components in cell-cell communication. EVs are known to carry multiple factors derived from their cell of origin, including cytokines and chemokines, active enzymes, metabolites, nucleic acids, and surface molecules, that can alter the behavior of recipient cells. Since the cargo of EVs reflects their parental cells, EVs from damaged and dysfunctional tissue environments offer an abundance of information toward elucidating the molecular mechanisms of various diseases and pathological conditions. In this review, we discuss the most recent findings regarding the role of EVs in the progression of cancer, metabolic disorders, and inflammatory lung diseases given the high prevalence of these conditions worldwide and the important role that intercellular communication between immune, parenchymal, and stromal cells plays in the development of these pathological states. We also consider the clinical applications of EVs, including the possibilities for their use as novel therapeutics. While intercellular communication through extracellular vesicles (EVs) is key for physiological processes and tissue homeostasis, injury and stress result in altered communication patterns in the tissue microenvironment. When left unchecked, EV-mediated interactions between stromal, immune, and parenchymal cells lead to the development of disease states Video Abstract.


Cell Communication/genetics , Extracellular Vesicles/genetics , Neoplasms/genetics , Tumor Microenvironment/genetics , Extracellular Vesicles/pathology , Homeostasis/genetics , Humans , Neoplasms/pathology
9.
Immunol Rev ; 304(1): 62-76, 2021 11.
Article En | MEDLINE | ID: mdl-34542176

One of the hallmarks of the immune system is a dynamic landscape of cellular communication through the secretion of soluble factors, production of cell-bound ligands, and expression of surface receptors. This communication affects all aspects of immune cell behavior, integrates the responses of immune cells in tissues, and is fundamental to orchestrating effective immunity. Recent pioneering work has shown that the transfer of ribonucleic acids (RNAs) constitutes a novel mode of cellular communication. This communication involves diverse RNA species, with short noncoding RNAs especially enriched in the extracellular space. These RNAs are highly stable and selectively packaged for secretion. Transferred RNAs have functions in target cells that both mirror their cell-intrinsic roles and adopt novel mechanisms of action. These extracellular RNAs both impact the behavior of individual immune cells and participate in local and systemic immune responses. The impacts of RNA communication on immune cells and disease states have important implications for the development of novel clinical biomarkers and innovative therapeutic designs in immune-related disease. In this review, we will discuss the foundation of knowledge that is establishing RNA communication as an active and functional process in the immune system.


Extracellular Vesicles , RNA , Cell Communication , Immune System , RNA/genetics
10.
J Immunol ; 207(3): 902-912, 2021 08 01.
Article En | MEDLINE | ID: mdl-34301845

Myeloid cells are critical for systemic inflammation, microbial control, and organ damage during sepsis. MicroRNAs are small noncoding RNAs that can dictate the outcome of sepsis. The role of myeloid-based expression of microRNA-21 (miR-21) in sepsis is inconclusive. In this study, we show that sepsis enhanced miR-21 expression in both peritoneal macrophages and neutrophils from septic C57BL/6J mice, and the deletion of miR-21 locus in myeloid cells (miR-21Δmyel mice) enhanced animal survival, decreased bacterial growth, decreased systemic inflammation, and decreased organ damage. Resistance to sepsis was associated with a reduction of aerobic glycolysis and increased levels of the anti-inflammatory mediators PGE2 and IL-10 in miR-21Δmyel in vivo and in vitro. Using blocking Abs and pharmacological tools, we discovered that increased survival and decreased systemic inflammation in septic miR-21Δmyel mice is dependent on PGE2/IL-10-mediated inhibition of glycolysis. Together, these findings demonstrate that expression of miR-21 in myeloid cells orchestrates the balance between anti-inflammatory mediators and metabolic reprogramming that drives cytokine storm during sepsis.


Dinoprostone/metabolism , Interleukin-10/metabolism , Macrophages, Peritoneal/physiology , MicroRNAs/genetics , Neutrophils/physiology , Sepsis/immunology , Animals , Cells, Cultured , Cellular Reprogramming , Glycolysis , Humans , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Sepsis/genetics
11.
Cell Rep ; 26(4): 933-944.e4, 2019 01 22.
Article En | MEDLINE | ID: mdl-30673615

Extracellular RNAs (exRNAs) can be released by numerous cell types in vitro, are often protected within vesicles, and can modify recipient cell function. To determine how the composition and cellular sources of exRNAs and the extracellular vesicles (EVs) that carry them change in vivo during tissue inflammation, we analyzed bronchoalveolar lavage fluid (BALF) from mice before and after lung allergen challenge. In the lung, extracellular microRNAs (ex-miRNAs) had a composition that was highly correlated with airway-lining epithelium. Using cell type-specific membrane tagging and single vesicle flow, we also found that 80% of detected vesicles were of epithelial origin. After the induction of allergic airway inflammation, miRNAs selectively expressed by immune cells, including miR-223 and miR-142a, increased and hematopoietic-cell-derived EVs also increased >2-fold. These data demonstrate that infiltrating immune cells release ex-miRNAs and EVs in inflamed tissues to alter the local extracellular environment.


Asthma/metabolism , Bronchoalveolar Lavage Fluid , Lung/metabolism , MicroRNAs/metabolism , Animals , Mice , Mice, Transgenic
12.
Methods Mol Biol ; 1799: 341-351, 2018.
Article En | MEDLINE | ID: mdl-29956162

Transgenic methods to manipulate CD4 T lymphocytes in vivo via forced expression of TCR transgenes and targeted "knockout" of individual genes by Cre-lox technology are fundamental to modern immunology. However, efforts to scale up functional analysis by modifying expression of larger numbers of genes in T cells ex vivo have proven surprisingly difficult. Early RNA interference experiments achieved successful small RNA transfection by using very high concentrations of short-interfering RNA (siRNA) [1], but primary T cells are generally resistant to standard electroporation, cationic liposome-, and calcium phosphate-mediated transfection methods. Moreover, although viral vectors can successfully introduce DNA fragments of varying length, expression of these constructs in primary T cells is low efficiency and the subcloning process laborious. In this context, the relatively recent discovery of dozens of highly expressed microRNAs (miRNAs) in the immune system provides both an opportunity and a new challenge [2, 3]. How can we query the miRNAome of a cell to assign particular roles to individual miRNAs? Here, we describe an optimized technique for efficient and reproducible transfection of primary mouse CD4 T cells in vitro with synthetic miRNA mimics.


Hypersensitivity/genetics , MicroRNAs/genetics , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Electroporation , Gene Expression , Hypersensitivity/immunology , Lymphocyte Activation , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
13.
J Cell Biol ; 217(4): 1395-1410, 2018 04 02.
Article En | MEDLINE | ID: mdl-29371232

Dendritic cells (DCs) produce major histocompatibility complex II (MHCII) in large amounts to function as professional antigen presenting cells. Paradoxically, DCs also ubiquitinate and degrade MHCII in a constitutive manner. Mice deficient in the MHCII-ubiquitinating enzyme membrane-anchored RING-CH1, or the ubiquitin-acceptor lysine of MHCII, exhibit a substantial reduction in the number of regulatory T (Treg) cells, but the underlying mechanism was unclear. Here we report that ubiquitin-dependent MHCII turnover is critical to maintain homeostasis of lipid rafts and the tetraspanin web in DCs. Lack of MHCII ubiquitination results in the accumulation of excessive quantities of MHCII in the plasma membrane, and the resulting disruption to lipid rafts and the tetraspanin web leads to significant impairment in the ability of DCs to engage and activate thymocytes for Treg cell differentiation. Thus, ubiquitin-dependent MHCII turnover represents a novel quality-control mechanism by which DCs maintain homeostasis of membrane domains that support DC's Treg cell-selecting function.


Cell Communication , Dendritic Cells/enzymology , Histocompatibility Antigens Class II/metabolism , Membrane Microdomains/enzymology , T-Lymphocytes, Regulatory/metabolism , Tetraspanins/metabolism , Thymocytes/metabolism , Ubiquitin-Protein Ligases/metabolism , Adoptive Transfer , Animals , Cell Differentiation , Cells, Cultured , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/pathology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Homeostasis , Lymphocyte Activation , Membrane Microdomains/immunology , Membrane Microdomains/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Tetraspanins/immunology , Thymocytes/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Ubiquitination
14.
J Exp Med ; 214(12): 3627-3643, 2017 Dec 04.
Article En | MEDLINE | ID: mdl-29122948

MicroRNAs (miRNAs) exert powerful effects on immunity through coordinate regulation of multiple target genes in a wide variety of cells. Type 2 innate lymphoid cells (ILC2s) are tissue sentinel mediators of allergic inflammation. We established the physiological requirements for miRNAs in ILC2 homeostasis and immune function and compared the global miRNA repertoire of resting and activated ILC2s and T helper type 2 (TH2) cells. After exposure to the natural allergen papain, mice selectively lacking the miR-17∼92 cluster in ILC2s displayed reduced lung inflammation. Moreover, miR-17∼92-deficient ILC2s exhibited defective growth and cytokine expression in response to IL-33 and thymic stromal lymphopoietin in vitro. The miR-17∼92 cluster member miR-19a promoted IL-13 and IL-5 production and inhibited expression of several targets, including SOCS1 and A20, signaling inhibitors that limit IL-13 and IL-5 production. These findings establish miRNAs as important regulators of ILC2 biology, reveal overlapping but nonidentical miRNA-regulated gene expression networks in ILC2s and TH2 cells, and reinforce the therapeutic potential of targeting miR-19 to alleviate pathogenic allergic responses.


Homeostasis/genetics , Hypersensitivity/genetics , Hypersensitivity/immunology , Immunity, Innate/genetics , Inflammation/pathology , Lymphocytes/metabolism , MicroRNAs/metabolism , Animals , Cell Proliferation , Cytokines/biosynthesis , Gene Expression Regulation , Mice, Inbred C57BL , MicroRNAs/genetics , Sequence Analysis, RNA , Suppressor of Cytokine Signaling 1 Protein/metabolism , Th2 Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
15.
Eur J Med Genet ; 60(10): 504-508, 2017 Oct.
Article En | MEDLINE | ID: mdl-28687524

We present a 7-year old male with severe delays, hypotonia and dysmorphic features who had striking, deep palmar and plantar creases and pillowing of the soft tissues of the palms and soles. His facial features included a high anterior hairline, small eyes with narrowed palpebral fissures, a bulbous nasal tip with a short columella, and a large mouth with a thin upper vermilion, and small chin. He had a submucous cleft palate, bilateral cryptorchidism and hydronephrosis. Cranial imaging demonstrated an Arnold Chiari malformation that was also present in his maternal uncle by report. Exome sequencing revealed a de novo heterozygous sequence variant, p.Tyr446Cys, in TBL1XR1 that has previously been reported in six patients with Pierpont syndrome. This sequence variant occurs in the carboxy-terminal, WD40 domain of the protein. As TBL1XR1 is a critical component of the NCoR/SMRT co-repressor complex and the WD40 repeats are hypothesized to interact with histone H2B and H4, the mutation may impact protein interactions necessary for stabilizing the complex with chromatin. De novo missense and frameshift mutations and deletions involving TBL1XR1 have been described in patients with intellectual disability and autism, but without any of the dysmorphic findings or malformations associated with Pierpont syndrome, implying a mutation-specific mechanism for the pathogenicity of p.Tyr446Cys. Our case is the first individual with this mutation to have a submucous cleft palate and hydronephrosis, although his severe delays, hypotonia, dysmorphic findings and emerging scoliosis appear consistent with previous reports. His distinctive facial and digital features are further evidence that p.Tyr446Cys results in a clinically recognizable, syndromic form of intellectual disability in contrast to other TBL1XR1 mutations.


Arnold-Chiari Malformation/genetics , Developmental Disabilities/genetics , Muscle Hypotonia/genetics , Mutation, Missense , Nuclear Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Arnold-Chiari Malformation/diagnosis , Child , Developmental Disabilities/diagnosis , Humans , Male , Muscle Hypotonia/diagnosis , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phenotype , Protein Binding , Protein Domains , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Syndrome
16.
J Immunol ; 199(2): 559-569, 2017 07 15.
Article En | MEDLINE | ID: mdl-28607111

Th17 cell responses orchestrate immunity against extracellular pathogens but also underlie autoimmune disease pathogenesis. In this study, we uncovered a distinct and critical role for miR-18a in limiting Th17 cell differentiation. miR-18a was the most dynamically upregulated microRNA of the miR-17-92 cluster in activated T cells. miR-18a deficiency enhanced CCR6+ RAR-related orphan receptor (ROR)γt+ Th17 cell differentiation in vitro and increased the number of tissue Th17 cells expressing CCR6, RORγt, and IL-17A in airway inflammation models in vivo. Sequence-specific miR-18 inhibitors increased CCR6 and RORγt expression in mouse and human CD4+ T cells, revealing functional conservation. miR-18a directly targeted Smad4, Hif1a, and Rora, all key transcription factors in the Th17 cell gene-expression program. These findings indicate that activating signals influence the outcome of Th cell differentiation via differential regulation of mature microRNAs within a common cluster.


Cell Differentiation , MicroRNAs/metabolism , Th17 Cells/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Cytokines/metabolism , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/pathology , Interleukin-17/immunology , Lymphocyte Activation , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, CCR6/genetics , Receptors, CCR6/immunology , Smad4 Protein/genetics , Smad4 Protein/metabolism , Th17 Cells/immunology
17.
Immunity ; 44(4): 821-32, 2016 Apr 19.
Article En | MEDLINE | ID: mdl-26850657

MicroRNAs (miRNAs) are important regulators of cell fate decisions in immune responses. They act by coordinate repression of multiple target genes, a property that we exploited to uncover regulatory networks that govern T helper-2 (Th2) cells. A functional screen of individual miRNAs in primary T cells uncovered multiple miRNAs that inhibited Th2 cell differentiation. Among these were miR-24 and miR-27, miRNAs coexpressed from two genomic clusters, which each functioned independently to limit interleukin-4 (IL-4) production. Mice lacking both clusters in T cells displayed increased Th2 cell responses and tissue pathology in a mouse model of asthma. Gene expression and pathway analyses placed miR-27 upstream of genes known to regulate Th2 cells. They also identified targets not previously associated with Th2 cell biology which regulated IL-4 production in unbiased functional testing. Thus, elucidating the biological function and target repertoire of miR-24 and miR-27 reveals regulators of Th2 cell biology.


Asthma/immunology , Interleukin-4/biosynthesis , MicroRNAs/genetics , Th2 Cells/immunology , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Disease Models, Animal , Female , Inflammation/immunology , Interleukin-4/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , Multigene Family/genetics , Sequence Analysis, RNA , Th2 Cells/cytology
19.
Curr Opin Immunol ; 36: 101-8, 2015 Oct.
Article En | MEDLINE | ID: mdl-26253882

Allergic diseases are prevalent and clinically heterogeneous, and are the pathologic consequence of inappropriate or exaggerated type 2 immune responses. In this review, we explore the role of microRNAs (miRNAs) in regulating allergic inflammation. We discuss how miRNAs, acting through target genes to modulate gene expression networks, impact multiple facets of immune cell function critical for type 2 immune responses including cell survival, proliferation, differentiation, and effector functions. Human and mouse studies indicate that miRNAs are significant regulators of allergic immune responses. Finally, investigations of extracellular miRNAs offer promise for noninvasive biomarkers and therapeutic strategies for allergy and asthma.


Asthma/genetics , Gene Expression Regulation , Hypersensitivity/genetics , MicroRNAs/genetics , Animals , Asthma/immunology , Asthma/metabolism , Asthma/therapy , Biomarkers , Gene Expression Profiling , Gene Regulatory Networks , Genetic Therapy , Humans , Hypersensitivity/immunology , Hypersensitivity/metabolism , Hypersensitivity/therapy , Immunity , RNA Interference , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , Signal Transduction
20.
Nat Immunol ; 15(12): 1162-70, 2014 Dec.
Article En | MEDLINE | ID: mdl-25362490

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promoted TH2 cytokine production and amplified inflammatory signaling by direct targeting of the inositol phosphatase PTEN, the signaling inhibitor SOCS1 and the deubiquitinase A20. Thus, upregulation of miR-19a in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways.


Asthma/immunology , Cytokines/biosynthesis , MicroRNAs/immunology , Th2 Cells/immunology , Animals , Asthma/genetics , Asthma/metabolism , Bronchoalveolar Lavage Fluid/cytology , Clinical Trials as Topic , Flow Cytometry , High-Throughput Screening Assays , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Mice , Mice, Transgenic , Multiplex Polymerase Chain Reaction , Th2 Cells/metabolism , Up-Regulation
...