Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Mech Behav Biomed Mater ; 152: 106407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277911

RESUMEN

OBJECTIVE: To evaluate the effect of a Nisin-based dentin pretreatment solution on microtensile bond strength, antibacterial activity, and matrix metalloproteinase (MMP) activity of the adhesive interface. MATERIALS AND METHODS: 100 human molars were sectioned to expose dentin. The teeth were assigned to five groups (n = 20), according to the dentin pretreatment: 0.5%, 1.0%, or 1.5% Nisin; 0.12% chlorhexidine (positive control), and no solution (negative control), and divided into 2 subgroups: no aging, and thermomechanical aging. Specimens were etched with 37% H3PO4 for 15 s and submitted to the dentin pretreatment. Then, they were bonded with an adhesive (Adper Single Bond 2) and a resin composite for microtensile bond strength (µTBS) evaluation. Antibacterial activity against Streptococcus mutans was qualitatively examined using an agar diffusion test. Anti-MMP activity within hybrid layers was examined using in-situ zymography. Data were analyzed with two-factor ANOVA and post-hoc Tukey's test (α = 0.050). RESULTS: For µTBS, significant differences were identified for the factors "solutions" (p = 0.002), "aging" (p = 0.017), and interaction of the two factors (p = 0.002). In the absence of aging, higher µTBS was observed for the group 0.5% Nisin. In the presence of aging, all groups showed similar µTBS values. All Nisin concentrations were effective in inhibiting the growth of S. mutans. Endogenous MMP activity was more significantly inhibited using 0.5% and 1.0% Nisin (p < 0.050). CONCLUSION: 0.5% and 1.0% Nisin solutions do not adversely affect resin-dentin bond strength and exhibit a potential bactericidal effect against S. mutans. Both concentrations effectively reduce endogenous gelatinolytic activity within the hybrid layer. CLINICAL RELEVANCE: The use of 0.5% and 1.0% Nisin solutions for dentin pretreatment potentially contributes to preserving the adhesive interface, increasing the longevity of composite restorations.


Asunto(s)
Recubrimiento Dental Adhesivo , Nisina , Humanos , Nisina/farmacología , Nisina/análisis , Adhesivos/análisis , Dentina/química , Antibacterianos/farmacología , Resinas Compuestas/química , Resistencia a la Tracción , Recubrimientos Dentinarios/química , Cementos de Resina/análisis , Ensayo de Materiales
2.
Int J Dent ; 2023: 2182651, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435112

RESUMEN

This study aimed to evaluate Nd:YAG laser, calcium phosphate, and adhesive system effect as different pretreatments in different protocols on dentin permeability (DP) and bond strength (BS). Fifty human dentin discs were used (4 mm in diameter and 1,5 mm in height). Specimens were divided into five groups (n = 10): (A): adhesive system (control); (AL): adhesive system + Nd:YAG laser; (LAL): Nd:YAG laser + adhesive system + Nd:YAG laser; (PAL): calcium phosphate-based dentin desensitizer TeethMate + adhesive system + Nd:YAG laser; and group (PLAL): Nd:YAG laser + calcium phosphate-based dentin desensitizer + adhesive system + Nd:YAG laser. All materials were used according to the manufacturers' instructions. The specimens were submitted to artificial aging (5,000 thermal cycles and 12 × 104 mechanical cycles) then a bond test was performed. DP was measured using the split chamber model. Data were submitted to one-way analysis of variance (ANOVA), paired t-test, RM ANOVA, and Tukey test (p < 0.05). All treatments were effective in DP reduction. For BS, the groups PAL and PLAL had improved BS with a statistically significant difference of the control group (A). Nd:Yag laser irradiation and calcium phosphate-based desensitizing agents significantly reduced DP, and the association between them could improve the BS on resin-human dentin interface.

3.
Eur J Dent ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513340

RESUMEN

OBJECTIVES: This article evaluated the effect of substrates rigidities on the post-fatigue fracture resistance of adhesively cemented simplified restorations in lithium disilicate glass ceramic. METHODS: Precrystalized computer-aided design/computer-aided manufacturing ceramic blocks were processed into disc-shaped specimens (n = 10, Ø = 10 mm), mimicking a simplified restoration at two thicknesses (0.5 and 1.0 mm). Thereafter, the discs were cemented onto different base substrates (dentin analogue [control], dentin analogue with a central core build-up of resin composite [RC], or glass ionomer cement [GIC]). The specimens were subjected to mechanical cycling in a chewing simulator (100 N, 1 × 106 cycles, 4 Hz) and then subjected to thermocycling aging (10,000 cycles, 5/37/55°C, 30 seconds). After the fatigue protocol, the specimens were loaded until failure (N) in a universal testing machine. Finite element analysis calculated the first principal stress at the center of the adhesive interface. RESULTS: The results showed that "restoration thickness," "type of substrate," and their interaction were statistically significant (one-way analysis of variance; p < 0.001). Regardless the restoration thickness a higher fracture load was observed for specimens cemented to dentin analogue. Among the base materials, RC build-up presented the highest fracture load and lower stress magnitude for both restoration thicknesses in comparison with GIC build-up. The 0.5-mm restoration showed higher stress peak and lower fracture load when submitted to the compressive test. CONCLUSION: More flexible base material reduces the fracture load and increases the stress magnitude of adhesively cemented lithium disilicate restorations regardless the ceramic thickness. Therefore, more rigid substrates are suggested to be used to prevent restoration mechanical failures.

4.
Int J Dent ; 2022: 4821021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249726

RESUMEN

Objective: This study aims to analyze the fluorescence-aided identification technique efficacy on adhesive remnant removal from the enamel surface after orthodontic bracket debonding. Materials and Methods: Forty-five extracted human upper central incisors were divided into 3 groups (n = 15) according to the kind of adhesive for bracket bonding and the use or absence of near UV light for remnant removal: BF/UV- fluorescent adhesive/UV light, BF/0-fluorescent adhesive/no UV light, and TB/0-nonfluorescent adhesive/no UV light. For all teeth, 100% of the adhesive used remained on the enamel surface after debonding. Fifteen dentists performed adhesive removal on the enamel surface using a carbide bur. The specimens were analyzed by a stereomicroscope, and the adhesive remnant percentage from each specimen was calculated. The time used by each dentist to perform the removal was recorded. The data were analyzed by one-way ANOVA and Tukey's test. Results: Significant differences were observed among groups for adhesive remnant (p=0.0008) and for time (p=0.0001). The means of adhesive remnant were BF/UV (5.84), BF/0 (34.37), and TB/0 (37.02). The mean times necessary to remove adhesive were BF/UV (1 min 40 s), BF/0 (3 min 03 s), and TB/0 (2 min 46 s). For the BF/UV group, significantly lower values of adhesive remnants and time for debonding were found (p < 0.05). Conclusion: The fluorescence-aided identification technique significantly reduced the amount of adhesive remnant, and the time necessary to perform this clinical procedure.

5.
Int J Dent ; 2022: 5837864, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35815117

RESUMEN

Radiotherapy induces a higher level of Candida spp. colonization, resulting in oral candidiasis. This study aimed to evaluate the phototransformation potential of the glycolic extract of Curcuma longa (C. longa); the antifungal activity of C. longa, curcumin, and antifungal photodynamic therapy (aPDT) with blue light-emitting diodes "LED" on Candida albicans and Candida tropicalis in vitro; and the toxicity of C. longa and curcumin in Galleria mellonella model. In order to confirm the light absorption capacity of the C. longa extract, its phototransformation potential was evaluated. The antifungal effect of C. longa, curcumin, and aPDT was evaluated over Candida spp. Finally, the toxicity of C. longa and curcumin was evaluated on the Galleria mellonella model. The data were analyzed using the GraphPad Prism 5.0 software considering α = 5%. It was found that C. longa, curcumin, and aPDT using blue LED have an antifungal effect over C. albicans and C. tropicalis. The extract of C. longa 100 mg/mL and curcumin 200 µg/mL do not show toxicity on Galleria mellonella model.

6.
Microsc Res Tech ; 85(8): 3014-3024, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35593488

RESUMEN

The present study evaluated the bond strength (µTBS) of dentin treated with chlorhexidine and propolis subjected to simulated pulpal pressure (SPP) and thermocycle aging. One hundred and twenty healthy human molars were sectioned to obtain 2 mm of dentin thickness and were divided into two groups (n = 60): SPP (15 cm H2 O) and no SPP (Control group). Dentin surfaces were conditioned with 37% phosphoric acid for 15 s and were divided according to the dentin treatment (n = 20): Control; Chlorhexidine gluconate (0.2% for 30 s) and Propolis (aqueous propolis extract for 30 s). Half of the specimens were submitted to 15,000 thermocycle aging (5 ± 2°C and 55 ± 2°C). The samples were sectioned into beams and submitted to µTBS. Data were analyzed by three-way ANOVA (SPP × Dentin treatment × Thermocycle aging) and the Tukey's tests (p < .001). With regard to the SPP, ANOVA revealed that the Control group (32.98 MPa) had significantly higher values of µTBS when compared to the SPP (29.19 MPa). With regard to Thermocycle aging, no aging (34.05 MPa) had significantly higher values of µTBS when compared to the aging (28.12 MPa). With regard to the dentin treatment, Propolis and Chlorhexidine did not statistically influence the results (p > .05). The SPP and thermocycle aging negatively influenced the bond strength between the dentin and resin; the 0.2% chlorhexidine digluconate and aqueous propolis extract solutions did not interfere in the bond strength between the resin and dentin. The use of chlorhexidine and propolis as a dental treatment may not influence the dentin bond strength, but SPP and thermocycle aging may damage the longitudinal dentin bond strength. RESEARCH HIGHLIGHTS: Chlorhexidine and propolis as a dental treatment may not influence the dentin bond strength. Simulated pulpal pressure and thermocycle aging may damage the longitudinal dentin bond strength.


Asunto(s)
Recubrimiento Dental Adhesivo , Própolis , Clorhexidina/química , Clorhexidina/farmacología , Resinas Compuestas/química , Dentina , Recubrimientos Dentinarios/química , Humanos , Ensayo de Materiales , Cementos de Resina/química , Resistencia a la Tracción
7.
Int J Dent ; 2022: 5771341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265134

RESUMEN

Objective: To evaluate the physicochemical (sorption (SOR), solubility (SOL), and degree of conversion (DC)) and mechanical (flexural strength (FS), modulus of elasticity (ME), and compressive strength (CS)) properties of adhesives with different water contents (D2O). Materials and Methods: An adhesive was formulated: 55 wt% BisGMA, 45 wt% HEMA, 0.5 wt% camphorquinone, 0.5 wt% EDMAB, and 1.0 wt% DPIHP. D2O was added into the adhesives (0 wt%, 10 wt%, and 16 wt%). DC was monitored through the FTIR. FS, ME, CS, SOR, and SOL were tested. The adhesive samples were aged in deionized water, ethanol, and acetone. Data were submitted to ANOVA and Tukey's tests (5%). Results: For DC, the 0 wt% group showed a significant reduction (68.09 ± 0.14A) compared with the 10 wt% (87.07 ± 0.81B) and 16 wt% groups (89.87 ± 0.24B); 10 wt% showed the highest FS (MPa) mean values (141.6 ± 6.71B) compared with the 0 wt% (109.4 ± 20.5A) and 16 wt% (107.8 ± 15.8A). For the CS (MPa) and ME (GPa), the 16 wt% showed the lowest mean values (98.8 ± 18.0B and 2.2 ± 0.3B, respectively) compared with the 10 wt% and 0 wt%. For the SOR, 16 wt% of water showed the highest mean values and the ethanol showed the lowest mean values of SOL regardless of water content. Conclusion: The amount of water content and the types of aging solvents significantly affect the adhesive properties.

8.
Int J Dent ; 2021: 2935507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956366

RESUMEN

This study compared the bond strength of a composite repair made with a bulk fill composite and a conventional one using different surface treatments. Specimens were prepared as truncated cones (bases: 4 mm × 2 mm, height: 4 mm) using a bulk fill (OBFa: Filtek One) or a conventional resin (FTKa: Filtek Z250) (n = 66). They were artificially aged (10,000 cycles, 5°C-55°C, 30 sec) and subdivided according to surface treatments: NT-no treatment (control), Abr-abrasion with a diamond tip, and sand-sandblasting with aluminum oxide (50 µm). Treatments were performed over the smaller diameter surface, followed by adhesive (Scothbond Universal) application. A new specimen with similar dimensions was constructed over it using either the OBF or the FTK, totaling 12 groups (n = 11). Bond strength was assessed by tensile test. The data were submitted to two-way ANOVA separately for OBFa and FTKa, followed by Tukey's test (p < 0.05). For the aged OBFa groups, there was significant differences for composite type and surface treatment, with higher values of bond strength when repaired with the same material (OBFa/OBF > OBFa/FTK), and sandblasting and bur abrasion presented higher values compared to the control group (NT). For the aged FTKa groups, there were no differences for the composite or surface treatment. Therefore, the bulk fill resin composite tested present better repair performance when the same composite was used, while the conventional resin composite was less influenced by the material and the surface treatment performed.

9.
Int J Dent ; 2021: 3130813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745262

RESUMEN

This study aimed to evaluate the efficacy of passive ultrasonic irrigation (PUI) on dissolving the organic tissue inside simulated internal root resorption (IRR) using sodium hypochlorite (NaOCl) or chlorhexidine (CHX). A total of 40 human lower premolars were collected based on dimensional and morphological similarities. The roots were embedded in cylinders (3 cm diameter; 2.5 cm height) of self-cured acrylic resin, and then an IRR was simulated. The specimens were divided into 4 groups (n = 10) according to irrigation protocols: group 1: CHX + PUI; group 2: CHX; group 3: NaOCl + PUI; group 4: NaOCl. The total irrigation time was 150 s at a flow rate of 5 mL/min. A tissue mass of porcine palatine mucosa was used to simulate the organic tissue, it was weighed before and after the irrigation using an analytic balance, and the difference between both readings was calculated and transferred to percentage values. Data were submitted to statistical analysis using two-way ANOVA (factors: irrigant type and with/without PUI) and Tukey's test for multiple comparisons among the experimental groups (α = 0.05). There was a significant difference in both factors (irrigant: p=0.04; PUI: p ≤ 0.001). The groups that used PUI were more effective in dissolving the organic tissue of the IRR simulation than the groups without PUI. PUI is more effective than the syringe and needle irrigation in organic tissue dissolution.

10.
Int J Dent ; 2021: 6677159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815502

RESUMEN

This study evaluated the effect of different surface treatments on the tensile bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. Fifty truncated cone-shape glass-ceramics were divided into five groups (n = 10): G1, control: 10% hydrofluoric acid (HF); G2, Nd:YAG laser + silane; G3, Sil + Nd:YAG laser; G4, graphite + Nd:YAG laser + Sil; and G5, graphite + Sil + Nd:YAG laser. Fifty human third-molars were cut to cylindrical shape and polished to standardize the bonding surfaces. The glass-ceramic specimens were bonded to dentin with a dual-cured resin cement and stored in distilled water for 24 h at 37ºC. Tensile testing was performed on a universal testing machine (10 Kgf load cell at 1 mm/min) until failure. The bond strength values (mean ± SD) in MPa were G1 (9.4 ± 2.3), G2 (9.7 ± 2.0), G3 (6.7 ± 1.9), G4 (4.6 ± 1.1), and G5 (1.2 ± 0.3). Nd:YAG laser and HF improve the bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. The application of a graphite layer prior to Nd:YAG laser irradiation negatively affects this bonding and presented inferior results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA