Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Accid Anal Prev ; 146: 105550, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32947207

RESUMEN

Many cyclist fatalities occur on roads when crossing a vehicle path. Active safety systems address these interactions. However, the driver behaviour models that these systems use may not be optimal in terms of driver acceptance. Incorporating explicit estimates of driver discomfort might improve acceptance. This study quantified the degree of discomfort experienced by drivers when cyclists crossed their travel path. Participants were instructed to drive through an intersection in a fixed-base simulator or on a test track, following the same experimental protocol. During the experiments, three variables were controlled: 1) the car speed (30, 50 km/h), 2) the bicycle speed (10, 20 km/h), and 3) the bicycle-car encroachment sequence (bicycle clears the intersection first, potential 50 %-overlap crash, and car clears the intersection first). For each trial, a covariate, the car's time-to-arrival at the intersection when the bicycle appears (TTAvis), was calculated. After each trial, the participants were asked to report their experienced discomfort on a 7-point Likert scale ranging from no discomfort (1) to maximum discomfort (7). The effect of the three controlled variables and the effect of TTAvis on drivers' discomfort were estimated using cumulative link mixed models (CLMM). Across both experimental environments, the controlled variables were shown to significantly influence discomfort. TTAvis was shown to have a significant effect on discomfort as well; the closer to zero TTAvis was (i.e., the more critical the situation), the more likely the driver reported great discomfort. The prediction accuracies of the CLMM with all three controlled variables and the CLMM with TTAvis were similar, with an average accuracy between 40 and 50 % for the exact discomfort level and between 80 and 85 % allowing deviations by one step. Our model quantifies driver discomfort. Such model may be included in the decision-making algorithms of active safety systems to improve driver acceptance. In fact, by tuning system activation times depending on the expected level of discomfort that a driver would experience in such situation, a system is not likely to annoy a driver.


Asunto(s)
Accidentes de Tránsito/prevención & control , Automatización , Conducción de Automóvil/psicología , Ciclismo , Modelos Biológicos , Peatones , Administración de la Seguridad/métodos , Adulto , Algoritmos , Señales (Psicología) , Planificación Ambiental , Femenino , Humanos , Masculino , Equipos de Seguridad , Estrés Psicológico
2.
Traffic Inj Prev ; 20(sup1): S21-S26, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31381428

RESUMEN

Objective: Systems that can warn the driver of a possible collision with a vulnerable road user (VRU) have significant safety benefits. However, incorrect warning times can have adverse effects on the driver. If the warning is too late, drivers might not be able to react; if the warning is too early, drivers can become annoyed and might turn off the system. Currently, there are no methods to determine the right timing for a warning to achieve high effectiveness and acceptance by the driver. This study aims to validate a driver model as the basis for selecting appropriate warning times. The timing of the forward collision warnings (FCWs) selected for the current study was based on the comfort boundary (CB) model developed during a previous project, which describes the moment a driver would brake. Drivers' acceptance toward these warnings was analyzed. The present study was conducted as part of the European research project PROSPECT ("Proactive Safety for Pedestrians and Cyclists"). Methods: Two warnings were selected: One inside the CB and one outside the CB. The scenario tested was a cyclist crossing scenario with time to arrival (TTA) of 4 s (it takes the cyclist 4 s to reach the intersection). The timing of the warning inside the CB was at a time to collision (TTC) of 2.6 s (asymptotic value of the model at TTA = 4 s) and the warning outside the CB was at TTC = 1.7 s (below the lower 95% value at TTA = 4 s). Thirty-one participants took part in the test track study (between-subjects design where warning time was the independent variable). Participants were informed that they could brake any moment after the warning was issued. After the experiment, participants completed an acceptance survey. Results: Participants reacted faster to the warning outside the CB compared to the warning inside the CB. This confirms that the CB model represents the criticality felt by the driver. Participants also rated the warning inside the CB as more disturbing, and they had a higher acceptance of the system with the warning outside the CB. The above results confirm the possibility of developing wellsaccepted warnings based on driver models. Conclusions: Similar to other studies' results, drivers prefer warning times that compare with their driving behavior. It is important to consider that the study tested only one scenario. In addition, in this study, participants were aware of the appearance of the cyclist and the warning. A further investigation should be conducted to determine the acceptance of distracted drivers.


Asunto(s)
Accidentes de Tránsito/prevención & control , Conducción de Automóvil/psicología , Modelos Psicológicos , Equipos de Seguridad , Adulto , Ciclismo , Femenino , Humanos , Masculino , Tiempo de Reacción , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA