Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Cell Rep Med ; 5(6): 101591, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838677

RESUMEN

Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.


Asunto(s)
Cromosomas Humanos Par 14 , MicroARN Circulante , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/sangre , MicroARN Circulante/sangre , MicroARN Circulante/genética , Masculino , Femenino , Cromosomas Humanos Par 14/genética , Adulto , Adolescente , Sitios Genéticos , Adulto Joven , MicroARNs/genética , MicroARNs/sangre , Biomarcadores/sangre , Niño , Predisposición Genética a la Enfermedad
2.
Nat Commun ; 15(1): 4971, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871688

RESUMEN

Human type 1 diabetes (T1D) is caused by autoimmune attack on the insulin-producing pancreatic beta cells by islet antigen-reactive T cells. How human islet antigen-reactive (IAR) CD4+ memory T cells from peripheral blood affect T1D progression in the pancreas is poorly understood. Here, we aim to determine if IAR T cells in blood could be detected in pancreas. We identify paired αß (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new-onset, and established T1D donors, and measured sequence overlap with TCRs in pancreata from healthy, at risk and T1D organ donors. We report extensive TRA junction sharing between IAR T cells and pancreas-infiltrating T cells (PIT), with perfect-match or single-mismatch TRA junction amino acid sequences comprising ~29% total unique IAR TRA junctions (942/3,264). PIT-matched TRA junctions were largely public and enriched for TRAV41 usage, showing significant nucleotide sequence convergence, increased use of germline-encoded versus non-templated residues in epitope engagement, and a potential for cross-reactivity. Our findings thus link T cells with distinctive germline-like TRA chains in the peripheral blood with T cells in the pancreas.


Asunto(s)
Diabetes Mellitus Tipo 1 , Páncreas , Receptores de Antígenos de Linfocitos T alfa-beta , Humanos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/sangre , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Páncreas/inmunología , Masculino , Femenino , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T/inmunología , Células Germinativas/inmunología , Células Germinativas/metabolismo , Autoantígenos/inmunología
3.
Diabetes Care ; 47(6): 1048-1055, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621411

RESUMEN

OBJECTIVE: Mixed-meal tolerance test-stimulated area under the curve (AUC) C-peptide at 12-24 months represents the primary end point for nearly all intervention trials seeking to preserve ß-cell function in recent-onset type 1 diabetes. We hypothesized that participant benefit might be detected earlier and predict outcomes at 12 months posttherapy. Such findings would support shorter trials to establish initial efficacy. RESEARCH DESIGN AND METHODS: We examined data from six Type 1 Diabetes TrialNet immunotherapy randomized controlled trials in a post hoc analysis and included additional stimulated metabolic indices beyond C-peptide AUC. We partitioned the analysis into successful and unsuccessful trials and analyzed the data both in the aggregate as well as individually for each trial. RESULTS: Among trials meeting their primary end point, we identified a treatment effect at 3 and 6 months when using C-peptide AUC (P = 0.030 and P < 0.001, respectively) as a dynamic measure (i.e., change from baseline). Importantly, no such difference was seen in the unsuccessful trials. The use of C-peptide AUC as a 6-month dynamic measure not only detected treatment efficacy but also suggested long-term C-peptide preservation (R2 for 12-month C-peptide AUC adjusted for age and baseline value was 0.80, P < 0.001), and this finding supported the concept of smaller trial sizes down to 54 participants. CONCLUSIONS: Early dynamic measures can identify a treatment effect among successful immune therapies in type 1 diabetes trials with good long-term prediction and practical sample size over a 6-month period. While external validation of these findings is required, strong rationale and data exist in support of shortening early-phase clinical trials.


Asunto(s)
Péptido C , Diabetes Mellitus Tipo 1 , Inmunoterapia , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Humanos , Péptido C/sangre , Péptido C/metabolismo , Inmunoterapia/métodos , Femenino , Masculino , Adolescente , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Niño , Adulto , Área Bajo la Curva
4.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557588

RESUMEN

It is crucial to study the human pancreas to understand the pathophysiological mechanisms associated with type 1 (T1D) and 2 diabetes (T2D) as well as the pancreas endocrine and exocrine physiology and interplay. Much has been learned from the study of isolated pancreatic islets, but this prevents examining their function and interactions in the context of the whole tissue. Pancreas slices provide a unique opportunity to explore the physiology of normal, inflamed, and structurally damaged islets within their native environment, in turn allowing the study of interactions between endocrine and exocrine compartments to better investigate the complex dynamics of pancreatic tissue. Thus, the adoption of the living pancreas slice platform represents a significant advancement in the field. This protocol describes how to generate living tissue slices from deceased organ donors by tissue embedding in agarose and vibratome slicing as well as their utilization to assess functional readouts such as dynamic secretion and live cell imaging.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Páncreas Exocrino , Humanos , Páncreas Exocrino/cirugía , Páncreas/cirugía
5.
Diabetes Care ; 47(5): 826-834, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38498185

RESUMEN

OBJECTIVE: To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed. Together with available clinical covariables, we applied the Cox regression model to assess HLAII immunogenic associations with the disease progression. RESULTS: First, the current investigation updated the previously reported genetic associations of DQA1*03:01-DQB1*03:02 (hazard ratio [HR] = 1.25, P = 3.50*10-3) and DQA1*03:03-DQB1*03:01 (HR = 0.56, P = 1.16*10-3), and also uncovered a risk association with DQA1*05:01-DQB1*02:01 (HR = 1.19, P = 0.041). Second, after adjusting for DQ, DPA1*02:01-DPB1*11:01 and DPA1*01:03-DPB1*03:01 were found to have opposite associations with progression (HR = 1.98 and 0.70, P = 0.021 and 6.16*10-3, respectively). Third, DRB1*03:01-DRB3*01:01 and DRB1*03:01-DRB3*02:02, sharing the DRB1*03:01, had opposite associations (HR = 0.73 and 1.44, P = 0.04 and 0.019, respectively), indicating a role of DRB3. Meanwhile, DRB1*12:01-DRB3*02:02 and DRB1*01:03 alone were found to associate with progression (HR = 2.6 and 2.32, P = 0.018 and 0.039, respectively). Fourth, through enumerating all heterodimers, it was found that both DQ and DP could exhibit associations with disease progression. CONCLUSIONS: These results suggest that HLAII polymorphisms influence progression from islet autoimmunity to T1D among at-risk subjects with islet autoantibodies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Seroconversión , Genotipo , Haplotipos , Progresión de la Enfermedad , Cadenas HLA-DRB1/genética , Cadenas beta de HLA-DQ/genética , Alelos , Frecuencia de los Genes
6.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446892

RESUMEN

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Asunto(s)
Infecciones por Coxsackievirus , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfocitos T CD8-positivos , Anticuerpos , Epítopos , Péptidos , Antivirales
7.
Front Immunol ; 15: 1354101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495894

RESUMEN

Beyond the direct benefit that a transplanted organ provides to an individual recipient, the study of the transplant process has the potential to create a better understanding of the pathogenesis, etiology, progression and possible therapy for recurrence of disease after transplantation while at the same time providing insight into the original disease. Specific examples of this include: 1) recurrence of focal segmental glomerulosclerosis (FSGS) after kidney transplantation, 2) recurrent autoimmunity after pancreas transplantation, and 3) recurrence of disease after orthotopic liver transplantation (OLT) for cirrhosis related to progressive steatosis secondary to jejuno-ileal bypass (JIB) surgery. Our team has been studying these phenomena and their immunologic underpinnings, and we suggest that expanding the concept to other pathologic processes and/or transplanted organs that harbor the risk for recurrent disease may provide novel insight into the pathogenesis of a host of other disease processes that lead to organ failure.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Fallo Renal Crónico , Trasplante de Riñón , Trasplantes , Humanos , Recurrencia Local de Neoplasia/complicaciones , Trasplante de Riñón/efectos adversos , Fallo Renal Crónico/etiología
8.
Front Endocrinol (Lausanne) ; 14: 1236574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027145

RESUMEN

Introduction: For more than a century, enteroviral infections have been associated with autoimmunity and type 1 diabetes (T1D). Uncontrolled viral response pathways repeatedly presented during childhood highly correlate with autoimmunity and T1D. Virus responses evoke chemokines and cytokines, the "cytokine storm" circulating through the body and attack cells especially vulnerable to inflammatory destruction. Intra-islet inflammation is a major trigger of ß-cell failure in both T1D and T2D. The genetic contribution of islet inflammation pathways is apparent in T1D, with several mutations in the interferon system. In contrast, in T2D, gene mutations are related to glucose homeostasis in ß cells and insulin-target tissue and rarely within viral response pathways. Therefore, the current study evaluated whether enteroviral RNA can be found in the pancreas from organ donors with T2D and its association with disease progression. Methods: Pancreases from well-characterized 29 organ donors with T2D and 15 age- and BMI-matched controls were obtained from the network for pancreatic organ donors with diabetes and were analyzed in duplicates. Single-molecule fluorescence in-situ hybridization analyses were performed using three probe sets to detect positive-strand enteroviral RNA; pancreas sections were co-stained by classical immunostaining for insulin and CD45. Results: There was no difference in the presence or localization of enteroviral RNA in control nondiabetic and T2D pancreases; viral infiltration showed large heterogeneity in both groups ranging from 0 to 94 virus+ cells scattered throughout the pancreas, most of them in the exocrine pancreas. Very rarely, a single virus+ cell was found within islets or co-stained with CD45+ immune cells. Only one single T2D donor presented an exceptionally high number of viruses, similarly as seen previously in T1D, which correlated with a highly reduced number of ß cells. Discussion: No association of enteroviral infection in the pancreas and T2D diabetes could be found. Despite great similarities in inflammatory markers in islets in T1D and T2D, long-term enteroviral infiltration is a distinct pathological feature of T1D-associated autoimmunity and in T1D pancreases.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Infecciones por Enterovirus , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Infecciones por Enterovirus/complicaciones , Insulina/metabolismo , Inflamación/complicaciones , ARN
9.
Cell Metab ; 35(11): 1944-1960.e7, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37898119

RESUMEN

Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.


Asunto(s)
Células Endocrinas , Análisis de Expresión Génica de una Sola Célula , Humanos , Páncreas , Diferenciación Celular
10.
J Immunol ; 211(12): 1792-1805, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37877672

RESUMEN

In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining ß2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived ß cell autoantigen-specific TCRs.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Antígenos HLA-DQ , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Insulina , Ratones Transgénicos , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/genética
11.
Res Sq ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37886513

RESUMEN

Human islet antigen reactive CD4 + memory T cells (IAR T cells) from peripheral blood have been studied extensively for their role in the pathogenesis of autoimmune type 1 diabetes (T1D). However, IAR T cells are rare, and it remains poorly understood how they affect T1D progression in the pancreas. Using single cell RNA-sequencing coupled with a multiplexed activation induced marker (AIM) enrichment assay, we identified paired TCR alpha/beta (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new onset, and established T1D donors. Using TCR sequences as barcodes, we measured infiltration of IAR T cells from blood into pancreas of organ donors with and without T1D. We detected extensive TCR sharing between IAR T cells from peripheral blood and pancreatic infiltrating T cells (PIT), with perfectly matched or single mismatched TRA junctions and J gene regions, comprising ~ 34% of unique IAR TCRs. PIT-matching IAR T cells had public TRA chains that showed increased use of germline-encoded residues in epitope engagement and a propensity for cross-reactivity. The link with T cells in the pancreas implicates autoreactive IAR T cells with shared TRA junctions and increased levels in blood with the prediabetic and new onset phases of T1D progression.

12.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662376

RESUMEN

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß-cell autoimmunity. We investigated how CVB impacts human ß cells and anti-CVB T-cell responses. ß cells were efficiently infected by CVB in vitro, downregulated HLA Class I and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized only a fraction of these peptides, and only another sub-fraction was targeted by effector/memory T cells that expressed the exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with the ß-cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Thus, our in-vitro and ex-vivo data highlight limited T-cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and non-structural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.

13.
Sci Rep ; 13(1): 12948, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558746

RESUMEN

Hypoglycemia in type 1 diabetes associates with changes in the pancreatic islet α cells, where the receptor for advanced glycation end products (RAGE) is highly expressed. This study compared islet RAGE expression in donors without diabetes, those at risk of, and those with type 1 diabetes. Laser-dissected islets were subject to RNA bioinformatics and adjacent pancreatic tissue were assessed by confocal microscopy. We found that islets from type 1 diabetes donors had differential expression of the RAGE gene (AGER) and its correlated genes, based on glucagon expression. Random forest machine learning revealed that AGER was the most important predictor for islet glucagon levels. Conversely, a generalized linear model identified that glucagon expression could be predicted by expression of RAGE signaling molecules, its ligands and enzymes that create or clear RAGE ligands. Confocal imaging co-localized RAGE, its ligands and signaling molecules to the α cells. Half of the type 1 diabetes cohort comprised of adolescents and a patient with history of hypoglycemia-all showed an inverse relationship between glucagon and RAGE. These data confirm an association between glucagon and islet RAGE, its ligands and signaling pathways in type 1 diabetes, which warrants functional investigation into a role for RAGE in hypoglycemia.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagón , Hipoglucemia , Receptor para Productos Finales de Glicación Avanzada , Adolescente , Humanos , Diabetes Mellitus Tipo 1/genética , Glucagón , Células Secretoras de Glucagón/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Ligandos , Receptor para Productos Finales de Glicación Avanzada/metabolismo
14.
Sci Data ; 10(1): 323, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237059

RESUMEN

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Donantes de Tejidos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Genómica , Páncreas
15.
Diabetologia ; 66(1): 127-131, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36282337

RESUMEN

AIMS/HYPOTHESIS: TCF7L2 variants are the strongest genetic risk factor for type 2 diabetes. In individuals with type 1 diabetes, these variants are associated with a higher C-peptide AUC, a lower glucose AUC during an OGTT, single autoantibody positivity near diagnosis, particularly in individuals older than 12 years of age, and a lower frequency of type 1 diabetes-associated HLA genotypes. Based on initial observations from clinical cohorts, we tested the hypothesis that type 2 diabetes-predisposing TCF7L2 genetic variants are associated with a higher percentage of residual insulin-containing cells (ICI%) in pancreases of donors with type 1 diabetes, by examining genomic data and pancreatic tissue samples from the Network for Pancreatic Organ donors with Diabetes (nPOD) programme. METHODS: We analysed nPOD donors with type 1 diabetes (n=110; mean±SD age at type 1 diabetes onset 12.2±7.9 years, mean±SD diabetes duration 15.3±13.7 years, 53% male, 80% non-Hispanic White, 12.7% African American, 7.3% Hispanic) using data pertaining to residual beta cell number; quantified islets containing insulin-positive beta cells in pancreatic tissue sections; and expressed these values as a percentage of the total number of islets from each donor (mean ± SD ICI% 9.8±21.5, range 0-92.2). RESULTS: Donors with a high ICI% (≥5) (n=30; 27%) vs a low ICI% (<5) (n=80; 73%) were older at onset (15.3±6.9 vs 11.1±8 years, p=0.013), had a shorter diabetes duration at donor tissue procurement (7.0±7.4 vs 18.5±14.3 years, p<0.001), a higher African ancestry score (0.2±0.3 vs 0.1±0.2, p=0.043) and a lower European ancestry score (0.7±0.3 vs 0.9±0.3, p=0.023). After adjustment for age of onset (p=0.105), diabetes duration (p<0.001), BMI z score (p=0.145), sex (p=0.351) and African American race (p=0.053), donors with the TCF7L2 rs7903146 T allele (TC or TT, 45.5%) were 2.93 times (95% CI 1.02, 8.47) more likely to have a high ICI% than those without it (CC) (p=0.047). CONCLUSIONS/INTERPRETATION: Overall, these data support the presence of a type 1 diabetes endotype associated with a genetic factor that predisposes to type 2 diabetes, with donors in this category exhibiting less severe beta cell loss. It is possible that in these individuals the disease pathogenesis may include mechanisms associated with type 2 diabetes and thus this may provide an explanation for the poor response to immunotherapies to prevent type 1 diabetes or its progression in a subset of individuals. If so, strategies that target both type 1 diabetes and type 2 diabetes-associated factors when they are present may increase the success of prevention and treatment in these individuals.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Femenino , Insulina , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Proteína 2 Similar al Factor de Transcripción 7/genética
16.
Diabetes Care ; 45(12): 2982-2990, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326757

RESUMEN

OBJECTIVE: We studied longitudinal differences between progressors and nonprogressors to type 1 diabetes with similar and substantial baseline risk. RESEARCH DESIGN AND METHODS: Changes in 2-h oral glucose tolerance test indices were used to examine variability in diabetes progression in the Diabetes Prevention Trial-Type 1 (DPT-1) study (n = 246) and Type 1 Diabetes TrialNet Pathway to Prevention study (TNPTP) (n = 503) among autoantibody (Ab)+ children (aged <18.0 years) with similar baseline metabolic impairment (DPT-1 Risk Score [DPTRS] of 6.5-7.5), as well as in TNPTP Ab- children (n = 94). RESULTS: Longitudinal analyses revealed annualized area under the curve (AUC) of C-peptide increases in nonprogressors versus decreases in progressors (P ≤ 0.026 for DPT-1 and TNPTP). Vector indices for AUC glucose and AUC C-peptide changes (on a two-dimensional grid) also differed significantly (P < 0.001). Despite marked baseline metabolic impairment of nonprogressors, changes in AUC C-peptide, AUC glucose, AUC C-peptide-to-AUC glucose ratio (AUC ratio), and Index60 did not differ from Ab- relatives during follow-up. Divergence between nonprogressors and progressors occurred by 6 months from baseline in both cohorts (AUC glucose, P ≤ 0.007; AUC ratio, P ≤ 0.034; Index60, P < 0.001; vector indices of change, P < 0.001). Differences in 6-month change were positively associated with greater diabetes risk (respectively, P < 0.001, P ≤ 0.019, P < 0.001, and P < 0.001) in DPT-1 and TNPTP, except AUC ratio, which was inversely associated with risk (P < 0.001). CONCLUSIONS: Novel findings show that even with similarly abnormal baseline risk, progressors had appreciably more metabolic impairment than nonprogressors within 6 months and that the measures showing impairment were predictive of type 1 diabetes. Longitudinal metabolic patterns did not differ between nonprogressors and Ab- relatives, suggesting persistent ß-cell responsiveness in nonprogressors.


Asunto(s)
Diabetes Mellitus Tipo 1 , Niño , Humanos , Péptido C/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Glucemia/metabolismo , Prueba de Tolerancia a la Glucosa , Autoanticuerpos , Glucosa , Progresión de la Enfermedad
17.
Diabetes Care ; 45(7): 1610-1620, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35621697

RESUMEN

OBJECTIVE: The purpose was to test the hypothesis that the HLA-DQαß heterodimer structure is related to the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype HLA-DQA1-B1 class II genes in 670 subjects in the Diabetes Prevention Trial-Type 1 (DPT-1). Coding sequences were translated into DQ α- and ß-chain amino acid residues and used in hierarchically organized haplotype (HOH) association analysis to identify motifs associated with diabetes onset. RESULTS: The opposite diabetes risks were confirmed for HLA DQA1*03:01-B1*03:02 (hazard ratio [HR] 1.36; P = 2.01 ∗ 10-3) and DQA1*03:03-B1*03:01 (HR 0.62; P = 0.037). The HOH analysis uncovered residue -18ß in the signal peptide and ß57 in the ß-chain to form six motifs. DQ*VA was associated with faster (HR 1.49; P = 6.36 ∗ 10-4) and DQ*AD with slower (HR 0.64; P = 0.020) progression to diabetes onset. VA/VA, representing DQA1*03:01-B1*03:02 (DQ8/8), had a greater HR of 1.98 (P = 2.80 ∗ 10-3). The DQ*VA motif was associated with both islet cell antibodies (P = 0.023) and insulin autoantibodies (IAAs) (P = 3.34 ∗ 10-3), while the DQ*AD motif was associated with a decreased IAA frequency (P = 0.015). Subjects with DQ*VA and DQ*AD experienced, respectively, increasing and decreasing trends of HbA1c levels throughout the follow-up. CONCLUSIONS: HLA-DQ structural motifs appear to modulate progression from islet autoimmunity to diabetes among at-risk relatives with islet autoantibodies. Residue -18ß within the signal peptide may be related to levels of protein synthesis and ß57 to stability of the peptide-DQab trimolecular complex.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Autoanticuerpos , Autoinmunidad/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Predisposición Genética a la Enfermedad , Antígenos HLA-DQ/genética , Cadenas alfa de HLA-DQ/genética , Cadenas beta de HLA-DQ/genética , Haplotipos , Humanos , Señales de Clasificación de Proteína/genética
18.
Cytotherapy ; 24(4): 421-427, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35086778

RESUMEN

BACKGROUND AIMS: To explore the long-term safety and benefit of umbilical cord mesenchymal stromal cell (MSCs) plus autologous bone marrow mononuclear cell (aBM-MNC) stem cell transplantation (SCT) without immunotherapy in established type 1 diabetes (T1D). METHODS: In the primary completion of this trial (ClinicalTrials.gov identifier: NCT01374854), the authors randomized patients (n = 21 per group) to either SCT or standard care (control) and previously reported effects on insulin secretion. The authors report about the incidence of chronic diabetes complications (primary endpoint) after 8 years of follow-up. The authors also report on secondary endpoints, safety, islet function and metabolic control. RESULTS: Data were obtained from 14 of 21 patients in the SCT group and 15 of 21 patients in the control group who completed follow-up. At 8 years, the incidence of peripheral neuropathy was 7.1% (one of 14) in the SCT group versus 46.7% (seven of 15) in the control group (P = 0.017). The incidence of diabetic nephropathy was 7.1% (one of 14) in the SCT group versus 40.0% (six of 15) in the control group (P = 0.039). The incidence of retinopathy was 7.1% (one of 14) in the SCT group versus 33.3% (five of 15) in the control group (P = 0.081). Two patients (two of 14, 14.3%) in the SCT group and 11 patients (11 of 15, 73.3%) in the control group developed at least one complication (P = 0.001). One and six patients in the SCT group and control group, respectively, had at least two complications (P = 0.039). No malignancies were reported in the treated group. CONCLUSIONS: Co-transplantation of umbilical cord MSCs and aBM-MNCs in patients with established T1D was associated with reduced incidence of chronic diabetes complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 1 , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Médula Ósea , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/terapia , Estudios de Seguimiento , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Proyectos Piloto , Cordón Umbilical
19.
J Endocrinol ; 252(2): R41-R57, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34755679

RESUMEN

We review the current knowledge of pancreas pathology in type 1 diabetes. During the last two decades, dedicated efforts toward the recovery of pancreas from deceased patients with type 1 diabetes have promoted significant advances in the characterization of the pathological changes associated with this condition. The implementation of autoantibody screening among organ donors has also allowed examining pancreas pathology in the absence of clinical disease, but in the presence of serological markers of autoimmunity. The assessment of key features of pancreas pathology across various disease stages allows driving parallels with clinical disease stages. The main pathological abnormalities observed in the pancreas with type 1 diabetes are beta-cell loss and insulitis; more recently, hyperexpression of HLA class I and class II molecules have been reproduced and validated. Additionally, there are changes affecting extracellular matrix components, evidence of viral infections, inflammation, and ER stress, which could contribute to beta-cell dysfunction and the stimulation of apoptosis and autoimmunity. The increasing appreciation that beta-cell loss can be less severe at diagnosis than previously estimated, the coexistence of beta-cell dysfunction, and the persistence of key features of pancreas pathology for years after diagnosis impact the perception of the dynamics of this chronic process. The emerging information is helping the identification of novel therapeutic targets and has implications for the design of clinical trials.


Asunto(s)
Diabetes Mellitus Tipo 1/patología , Endocrinología/tendencias , Páncreas/patología , Autoinmunidad/fisiología , Autopsia , Diabetes Mellitus Tipo 1/historia , Diabetes Mellitus Tipo 1/inmunología , Progresión de la Enfermedad , Endocrinología/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Páncreas/inmunología
20.
Cell Rep Med ; 2(8): 100371, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467248

RESUMEN

Enteroviral infections have been associated with autoimmunity and type 1 diabetes (T1D), but reliable methods to ascertain localization of single infected cells in the pancreas were missing. Using a single-molecule-based fluorescent in situ hybridization (smFISH) method, we detected increased virus infection in pancreases from organ donors with T1D and with disease-associated autoantibodies (AAb+). Although virus-positive ß cells are found at higher frequency in T1D pancreases, compared to control donors, but are scarce, most virus-positive cells are scattered in the exocrine pancreas. Augmented CD45+ lymphocytes in T1D pancreases show virus positivity or localization in close proximity to virus-positive cells. Many more infected cells were also found in spleens from T1D donors. The overall increased proportion of virus-positive cells in the pancreas of AAb+ and T1D organ donors suggests that enteroviruses are associated with immune cell infiltration, autoimmunity, and ß cell destruction in both preclinical and diagnosed T1D.


Asunto(s)
Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Enterovirus/genética , Páncreas/virología , ARN Viral/metabolismo , Donantes de Tejidos , Humanos , Linfocitos/inmunología , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...