Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spine (Phila Pa 1976) ; 49(17): 1179-1186, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38213106

RESUMEN

STUDY DESIGN: Experimental porcine anterior cervical discectomy and fusion (ACDF) model: a proof-of-concept study. OBJECTIVE: The effect of monetite synthetic bone graft (SBG) containing calcium pyrophosphate and ß-tricalcium phosphate on cervical spinal fusion in a noninstrumented two-level large animal model. SUMMARY OF BACKGROUND DATA: ACDF is the gold standard surgical technique for the treatment of degenerative cervical spinal diseases. However, pseudarthrosis associated with increased patient morbidity occurs in ∼2.6% of the surgeries. SBG may enhance bony fusion and subsequently decrease the risk of pseudarthrosis. Recent studies on monetite-based SBGs for use in large cranial defects in humans have shown promising bone healing results, necessitating further investigation of their use in cervical spinal fusion. MATERIALS AND METHODS: Four adult female Danish Göttingen minipigs received partial cervical anterior discectomy and intervertebral defects at an upper and lower level. One defect was filled with SBG, and the other was left empty. Bony fusion was evaluated using computed tomography (CT) at three-month intervals for 12 months. Fifteen months postsurgery, the animals were euthanized for further ex vivo qualitative histopathologic and micro-CT evaluations. Fusion rates were compared using the Fisher exact test at each time point. RESULTS: Increased interbody bony fusion rates were observed at SBG levels (4/4) compared with control levels (0/4) evaluated by CT at 6 and 9 months postsurgery ( P =0.029). Fusion was observed at all SBG levels 12 months postsurgery and at only one control level. Histopathologic evaluation confirmed high-quality interbody bony fusion at all SBG levels and fusion by spondylosis at one control level. CONCLUSION: This proof-of-concept study provides preliminary evidence of a novel, calcium pyrophosphate-containing, and ß-tricalcium phosphate-containing monetite SBG that promotes bony fusion compared with a negative control in a clinically relevant porcine model of ACDF.


Asunto(s)
Fosfatos de Calcio , Vértebras Cervicales , Discectomía , Fusión Vertebral , Porcinos Enanos , Animales , Fusión Vertebral/métodos , Discectomía/métodos , Porcinos , Fosfatos de Calcio/uso terapéutico , Vértebras Cervicales/cirugía , Vértebras Cervicales/diagnóstico por imagen , Femenino , Trasplante Óseo/métodos , Modelos Animales de Enfermedad
2.
Front Vet Sci ; 10: 1250147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799403

RESUMEN

Introduction: Arthrodesis, performed as a salvage surgical procedure to treat intractable joint conditions in dogs and cats, is associated with a high incidence of complications intra and postoperative, proving the need for improved and new techniques in arthrodesis surgery. Adding a new resorbable bone glue to the arthrodesis could potentially add fixation strength and lower complications. The objectives of this experimental ex vivo biomechanical study were therefore to develop a biomechanical test model of partial tarsal arthrodesis and to determine whether the new resorbable bone glue (phosphoserine modified cement) produced measurable fixation strength in canine calcaneoquartal arthrodesis, without orthopedic implants. Methods: Four biomechanical test models with a total of 35 canine tarsal joints were used. Soft tissues were dissected to 4 different test models with variable contributions from soft tissues. The calcaneoquartal joint was prepared as in vivo arthrodesis and the glue was applied to joint surfaces as a liquid/putty (0.4 cc). After curing for 24 h, a shear force was applied to the joint (1 mm per minute) and the failure strength was recorded. Results: Calcaneoquartal joints, where all soft tissues had been completely resected and fixated with glue (1-1.5 cm2 joint surface), withstood 2-5 mm of displacement and an average of 100 ± 58 N/cm2 of shear force (Model 1). Similar adhesive fixation strengths were obtained in Model 2 and 3 with increasing contributions from soft tissues (80 ± 44 and 63 ± 23 N/cm2, p = 0.39, ANOVA). Conclusion: The developed biomechanical model was sensitive enough to measure differences in fixation strengths between different glue formulations. The average fixation strength (60-100 N/cm2) should be strong enough to support short-term load bearing in medium sized canines (20 kg). The developed cadaver biomechanical test model is of potential use for other arthrodesis studies. The new resorbable glue can potentially contribute to stability at arthrodesis surgery, acting as a complement to today's standard fixation, metal implants.

3.
Chem Mater ; 34(19): 8815-8830, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36248225

RESUMEN

Interactions between biomolecules and structurally disordered calcium phosphate (CaP) surfaces are crucial for the regulation of bone mineralization by noncollagenous proteins, the organization of complexes of casein and amorphous calcium phosphate (ACP) in milk, as well as for structure-function relationships of hybrid organic/inorganic interfaces in biomaterials. By a combination of advanced solid-state NMR experiments and metadynamics simulations, we examine the detailed binding of O-phospho-l-serine (Pser) and l-serine (Ser) with ACP in bone-adhesive CaP cements, whose capacity of gluing fractured bone together stems from the close integration of the organic molecules with ACP over a subnanometer scale. The proximity of each carboxy, aliphatic, and amino group of Pser/Ser to the Ca2+ and phosphate species of ACP observed from the metadynamics-derived models agreed well with results from heteronuclear solid-state NMR experiments that are sensitive to the 13C-31P and 15N-31P distances. The inorganic/organic contacts in Pser-doped cements are also contrasted with experimental and modeled data on the Pser binding at nanocrystalline HA particles grown from a Pser-bearing aqueous solution. The molecular adsorption is driven mainly by electrostatic interactions between the negatively charged carboxy/phosphate groups and Ca2+ cations of ACP, along with H bonds to either protonated or nonprotonated inorganic phosphate groups. The Pser and Ser molecules anchor at their phosphate/amino and carboxy/amino moieties, respectively, leading to an extended molecular conformation across the surface, as opposed to an "upright standing" molecule that would result from the binding of one sole functional group.

4.
Biomedicines ; 10(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35453486

RESUMEN

One major challenge when developing new biomaterials is translating in vitro testing to in vivo models. We have recently shown that a single formulation of a bone tissue adhesive, phosphoserine modified cement (PMC), is safe and resorbable in vivo. Herein, we screened many new adhesive formulations, for cytocompatibility and bioactive ion release, with three cell lines: MDPC23 odontoblasts, MC3T3 preosteoblasts, and L929 fibroblasts. Most formulations were cytocompatible by indirect contact testing (ISO 10993-12). Formulations with larger amounts of phosphoserine (>50%) had delayed setting times, greater ion release, and cytotoxicity in vitro. The trends in ion release from the adhesive that were cured for 24 h (standard for in vitro) were similar to release from the adhesives cured only for 5−10 min (standard for in vivo), suggesting that we may be able to predict the material behavior in vivo, using in vitro methods. Adhesives containing calcium phosphate and silicate were both cytocompatible for seven days in direct contact with cell monolayers, and ion release increased the alkaline phosphatase (ALP) activity in odontoblasts, but not pre-osteoblasts. This is the first study evaluating how PMC formulation affects osteogenic cell differentiation (ALP), cytocompatibility, and ion release, using in situ curing conditions similar to conditions in vivo.

5.
Injury ; 53(6): 1858-1866, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35469636

RESUMEN

INTRODUCTION: The fixation of small intraarticular bone fragments is clinically challenging and an obvious first orthopaedic indication for an effective bone adhesive. In the present study the feasibility of bonding freshly harvested human trabecular bone with OsSticR, a novel phosphoserine modified cement, was evaluated using a bone cylinder model pull-out test and compared with a commercial fibrin tissue adhesive. METHODS: Femoral heads (n=13) were collected from hip fracture patients undergoing arthroplasty and stored refrigerated overnight in saline medium prior to testing. Cylindrical bone cores with a pre-inserted bone screw, were prepared using a coring tool. Each core was removed and glued back in place with either the bone adhesive (α-tricalcium phosphate, phosphoserine and 20% trisodium citrate solution) or the fibrin glue. All glued bones were stored in bone medium at 37°C. Tensile loading, using a universal testing machine (5 kN load cell), was applied to each core/head. For the bone adhesive, bone cores were tested at 2 (n=13) and 24 (n=11) hours. For the fibrin tissue adhesive control group (n=9), bone cores were tested exclusively at 2 hours. The femoral bone quality was evaluated with micro-CT. RESULTS: The ultimate pull-out load for the bone adhesive at 2 hours ranged from 36 to 171 N (mean 94 N, SD 42 N). At 24 hours the pull-out strength was similar, 47 to 198 N (mean 123 N, SD 43 N). The adhesive failure usually occurred through the adhesive layer, however in two samples, at 167 N and 198 N the screw pulled out of the bone core. The fibrin tissue adhesive group reached a peak force of 8 N maximally at 2 hours (range 2.8-8 N, mean 5.4 N, SD 1.6 N). The mean BV/TV for femoral heads was 0.15 and indicates poor bone quality. CONCLUSION: The bone adhesive successfully glued wet and fatty tissue of osteoporotic human bone cores. The mean ultimate pull-out force of 123 N at 24 hours corresponds to ∼ 300 kPa shear stress acting on the bone core. These first ex-vivo results in human bone are a promising step toward potential clinical application in osteochondral fragment fixation.


Asunto(s)
Adhesivos , Cabeza Femoral , Fenómenos Biomecánicos , Cementos para Huesos/farmacología , Tornillos Óseos , Adhesivo de Tejido de Fibrina/farmacología , Humanos , Fosfoserina
6.
Materials (Basel) ; 14(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34832137

RESUMEN

Controlled drug release and targeted drug delivery can reduce systemic toxicity of chemotherapeutics by restricting drugs to the target organ and increasing the local concentration. As tumors and inflamed tissue are often surrounded by an acidic microenvironment, pH-responsive calcium carbonates (CaCO3) are promising vehicles for controlled drug delivery applications. The aim of this study was to evaluate the loading efficacy and release of a chemotherapeutic drug, Hydroxyurea (HU), into the crystal structure of calcite. Incorporation of HU did not alter the crystallinity, crystal size, or morphology of precipitated calcite crystals, as assessed by XRD and SEM. The amount of HU was quantified by High-Pressure Liquid Chromatography (HPLC) and showed that 6.7 ± 0.7 µg of HU could be for each milligram of calcite (0.016 mol% ± 0.002). In cell media, the optimal pH for controlled release was 5 (0.1 mg/mL released after 1 h). However, in vitro, pH below 6.5 was cytotoxic to human breast cancer cells (MCF-7). Direct contact studies, where particles were incubated with MCF-7 cells, showed that the amount of HU release from calcite was not high enough to kill the cell or arrest growth at pH 6.5. Pre-dissolved release studies, where the particles were pre-dissolved in acidic media to simulate complete drug release in vivo, pH neutralized, and exposed to the cells, showed that the amount of loaded HU reduced the survival/proliferation of MCF7. In conclusion, it is possible to integrate HU into the crystal structure of a calcite crystal and release the drug in vitro at concentrations that can slow the growth of cancer cells, without affecting calcite morphology and crystallinity. Further research is needed to investigate the in vivo behavior of the particles and whether the actual tumor pH is low enough to achieve complete drug release in vivo.

7.
Front Bioeng Biotechnol ; 9: 728042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820360

RESUMEN

Osteoporotic fractures are a growing issue due to the increasing incidence of osteoporosis worldwide. High reoperation rates in osteoporotic fractures call for investigation into new methods in improving fixation of osteoporotic bones. In the present study, the strength of a recently developed bone bioadhesive, OsStictm, was evaluated in vivo using a novel bone core assay in a murine animal model at 0, 3, 7, 14, 28, and 42 days. Histology and micro-CT were obtained at all time points, and the mean peak pull-out force was assessed on days 0-28. The adhesive provided immediate fixation to the bone core. The mean peak bone core pull-out force gradually decreased from 6.09 N (σ 1.77 N) at day 0 to a minimum of 3.09 N (σ 1.08 N) at day 7, recovering to 6.37 N (σ 4.18 N) by day 28. The corresponding fibrin (Tisseel) control mean peak bone core pull-out characteristic was 0.27 N (σ 0.27 N) at day 0, with an abrupt increase from 0.37 N (σ 0.28) at day 3, 6.39 N (σ 5.09 N) at day 7, and continuing to increase to 11.34 N (σ 6.5 N) by day 28. The bone cores failed either through core pull-out or by the cancellous part of the core fracturing. Overall, the adhesive does not interrupt healing with pathological changes or rapid resorption. Initially, the adhesive bonded the bone core to the femur, and over time, the adhesive was replaced by a vascularised bone of equivalent quality and quantity to the original bone. At the 42 day time point, 70% of the adhesive in the cancellous compartment and 50% in the cortical compartment had been replaced. The adhesive outwith the bone shell was metabolized by cells that are only removing the material excess with no ectopic bone formation. It is concluded that the adhesive is not a physical and biochemical barrier as the bone heals through the adhesive and is replaced by a normal bone tissue. This adhesive composition meets many of the clinical unmet needs expressed in the literature, and may, after further preclinical assessments, have potential in the repair of bone and osteochondral fragments.

8.
Acta Biomater ; 127: 327-337, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33785452

RESUMEN

The reliability of conventional cell culture studies to evaluate biomaterials is often questioned, as in vitro outcomes may contradict results obtained through in vivo assays. Microfluidics technology has the potential to reproduce complex physiological conditions by allowing for fine control of microscale features such as cell confinement and flow rate. Having a continuous flow during cell culture is especially advantageous for bioactive biomaterials such as calcium-deficient hydroxyapatite (HA), which may otherwise alter medium composition and jeopardize cell viability, potentially producing false negative results in vitro. In this work, HA was integrated into a microfluidics-based platform (HA-on-chip) and the effect of varied flow rates (2, 8 and 14 µl/min, corresponding to 0.002, 0.008 and 0.014 dyn/cm2, respectively) was evaluated. A HA sample placed in a well plate (HA-static) was included as a control. While substantial calcium depletion and phosphate release occurred in static conditions, the concentration of ions in HA-on-chip samples remained similar to those of fresh medium, particularly at higher flow rates. Pre-osteoblast-like cells (MC3T3-E1) exhibited a significantly higher degree of proliferation on HA-on-chip (8 µl/min flow rate) as compared to HA-static. However, cell differentiation, analysed by alkaline phosphatase (ALP) activity, showed low values in both conditions. This study indicates that cells respond differently when cultured on HA under flow compared to static conditions, which indicates the need for more physiologically relevant methods to increase the predictive value of in vitro studies used to evaluate biomaterials. STATEMENT OF SIGNIFICANCE: There is a lack of correlation between the results obtained when testing some biomaterials under cell culture as opposed to animal models. To address this issue, a cell culture method with slightly enhanced physiological relevance was developed by incorporating a biomaterial, known to regenerate bone, inside of a microfluidic platform that enabled a continuous supply of cell culture medium. Since the utilized biomaterial interacts with surrounding ions, the perfusion of medium allowed for shielding of these changes similarly as would happen in the body. The experimental outcomes observed in the dynamic platform were different than those obtained with standard static cell culture systems, proving the key role of the platform in the assessment of biomaterials.


Asunto(s)
Durapatita , Microfluídica , Células 3T3 , Fosfatasa Alcalina , Animales , Biomimética , Diferenciación Celular , Proliferación Celular , Ratones , Osteoblastos , Reproducibilidad de los Resultados
9.
Sci Rep ; 10(1): 22154, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335113

RESUMEN

Existing methods for testing prosthetic implants suffer from critical limitations, creating an urgent need for new strategies that facilitate research and development of implants with enhanced osseointegration potential. Herein, we describe a novel, biomimetic, human bone platform for advanced testing of implants in vitro, and demonstrate the scientific validity and predictive value of this approach using an assortment of complementary evaluation methods. We anchored titanium (Ti) and stainless steel (SS) implants into biomimetic scaffolds, seeded with human induced mesenchymal stem cells, to recapitulate the osseointegration process in vitro. We show distinct patterns of gene expression, matrix deposition, and mineralization in response to the two materials, with Ti implants ultimately resulting in stronger integration strength, as seen in other preclinical and clinical studies. Interestingly, RNAseq analysis reveals that the TGF-beta and the FGF2 pathways are overexpressed in response to Ti implants, while the Wnt, BMP, and IGF pathways are overexpressed in response to SS implants. High-resolution imaging shows significantly increased tissue mineralization and calcium deposition at the tissue-implant interface in response to Ti implants, contributing to a twofold increase in pullout strength compared to SS implants. Our technology creates unprecedented research opportunities towards the design of implants and biomaterials that can be personalized, and exhibit enhanced osseointegration potential, with reduced need for animal testing.


Asunto(s)
Materiales Biomiméticos , Biomimética , Huesos , Prótesis e Implantes , Ingeniería de Tejidos , Biomimética/métodos , Humanos , Ensayo de Materiales , Oseointegración , Acero Inoxidable , Ingeniería de Tejidos/métodos , Titanio
10.
Proc Natl Acad Sci U S A ; 117(43): 26660-26671, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046631

RESUMEN

The repair of large cranial defects with bone is a major clinical challenge that necessitates novel materials and engineering solutions. Three-dimensionally (3D) printed bioceramic (BioCer) implants consisting of additively manufactured titanium frames enveloped with CaP BioCer or titanium control implants with similar designs were implanted in the ovine skull and at s.c. sites and retrieved after 12 and 3 mo, respectively. Samples were collected for morphological, ultrastructural, and compositional analyses using histology, electron microscopy, and Raman spectroscopy. Here, we show that BioCer implants provide osteoinductive and microarchitectural cues that promote in situ bone regeneration at locations distant from existing host bone, whereas bone regeneration with inert titanium implants was confined to ingrowth from the defect boundaries. The BioCer implant promoted bone regeneration at nonosseous sites, and bone bonding to the implant was demonstrated at the ultrastructural level. BioCer transformed to carbonated apatite in vivo, and the regenerated bone displayed a molecular composition indistinguishable from that of native bone. Proof-of-principle that this approach may represent a shift from mere reconstruction to in situ regeneration was provided by a retrieved human specimen, showing that the BioCer was transformed into well-vascularized osteonal bone, with a morphology, ultrastructure, and composition similar to those of native human skull bone.


Asunto(s)
Regeneración Ósea/fisiología , Sustitutos de Huesos/farmacología , Cerámica/farmacología , Prótesis e Implantes , Cráneo , Adulto , Animales , Sustitutos de Huesos/química , Cerámica/química , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Impresión Tridimensional , Ovinos , Cráneo/efectos de los fármacos , Cráneo/lesiones , Cráneo/cirugía , Titanio/química , Titanio/farmacología , Adulto Joven
11.
J Mech Behav Biomed Mater ; 110: 103897, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32957202

RESUMEN

Augmentation materials, such as ceramic and polymeric bone cements, have been frequently used to improve the physical engagement of screws inserted into bone. While ceramic, degradable cements may ultimately improve fixation stability, reports regarding their effect on early fixation stability have been inconsistent. On the other hand, a newly developed degradable ceramic adhesive that can bond with tissues surrounding the screw, may improve the pullout performance, ensure early stability, and subsequent bony integration. The aim of this study was to investigate failure mechanisms of screw/trabecular bone constructs by comparing non-augmented screws with screws augmented with a calcium phosphate cement or an adhesive, i.e. a phosphoserine-modified calcium phosphate. Pullout tests were performed on screws inserted into trabecular cylinders extracted from human femoral bone. Continuous and stepwise pullout loading was applied with and without real-time imaging in a synchrotron radiation micro-computed tomograph, respectively. Statistical analysis that took the bone morphology into account confirmed that augmentation with the adhesive supported significantly higher pullout loads compared to cement-augmented, or non-augmented screws. However, the adhesive also allowed for a higher injection volume compared to the cement. In-situ imaging showed cracks in the vicinity of the screw threads in all groups, and detachment of the augmentation materials from the trabecular bone in the augmented specimens. Additional cracks at the periphery of the augmentation and the bone-material interfaces were only observed in the adhesive-augmented specimen, indicating a contribution of surface bonding to the pullout resistance. An adhesive that has potential for bonding with tissues, displayed superior pullout resistance, compared to a brushite cement, and may be a promising material for cementation or augmentation of implants.


Asunto(s)
Adhesivos , Cementos para Huesos , Fenómenos Biomecánicos , Tornillos Óseos , Hueso Esponjoso , Humanos , Ensayo de Materiales
12.
ACS Cent Sci ; 6(2): 226-231, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32123740

RESUMEN

In this paper we report the synthesis of a library of phospho-amino acid analogues, via a novel single-step allyl-phosphoester protection/Pd-mediated deprotection strategy. These phosphoserine and phosphotyrosine analogues were then applied as additives to create adhesive calcium phosphate cements, allowing us to probe the chemical origins of the increased surface binding strength. We demonstrate the importance of multiple calcium binding motifs in mediating adhesion, as well as highlighting the crucial role played by substrate hydrophobicity and orientation in controlling binding strength.

13.
J Mater Sci Mater Med ; 31(2): 24, 2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32036502

RESUMEN

A new class of materials, bone adhesives, could revolutionise the treatment of highly fragmented fractures. We present the first biological safety investigation of a bio-inspired bone adhesive. The formulation was based upon a modified calcium phosphate cement that included the amino acid phosphoserine. This material has recently been described as substantially stronger than other bioresorbable calcium phosphate cements. Four adhesive groups with the active substance (phosphoserine) and two control groups without phosphoserine were selected for in vitro and in vivo biocompatibility testing. The test groups were subject for cell viability assay and subcutaneous implantation in rats that was followed by gene expression analysis and histology assessment after 6 and 12 weeks. All adhesive groups supported the same rate of cell proliferation compared to the α-TCP control and had viability between 45-64% when compared to cell control. There was no evidence of an increased immune response or ectopic bone formation in vivo. To conclude, this bio-inspired bone adhesive has been proven to be safe, in the present study, without any harmful effects on the surrounding soft tissue.


Asunto(s)
Materiales Biocompatibles/química , Cementos para Huesos , Ensayo de Materiales , Células 3T3 , Animales , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
14.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861132

RESUMEN

We present a solid-state nuclear magnetic resonance (NMR) spectroscopy study of the local 31 P and 1 H environments in monetite [CaHPO 4 ; dicalcium phosphate anhydrous (DCPA)], as well as their relative spatial proximities. Each of the three 1 H NMR peaks was unambiguously assigned to its respective crystallographically unique H site of monetite, while their pairwise spatial proximities were probed by homonuclear 1 H- 1 H double quantum-single quantum NMR experimentation under fast magic-angle spinning (MAS) of 66 kHz. We also examined the relative 1 H- 31 P proximities among the inequivalent {P1, P2} and {H1, H2, H3} sites in monetite; the corresponding shortest internuclear 1 H- 31 P distances accorded well with those of a previous neutron diffraction study. The NMR results from the monetite phase were also contrasted with those observed from the monetite component present in a pyrophosphate-bearing calcium phosphate cement, demonstrating that while the latter represents a disordered form of monetite, it shares all essential local features of the monetite structure.


Asunto(s)
Fosfatos de Calcio/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética/métodos , Enlace de Hidrógeno
15.
J Funct Biomater ; 10(4)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783637

RESUMEN

Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38-49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.

16.
Materials (Basel) ; 12(15)2019 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-31382566

RESUMEN

The aim of the present study was to evaluate the soft tissue bond strength of a newly developed, monomeric, biomimetic, tissue adhesive called phosphoserine modified cement (PMC). Two types of PMCs were evaluated using lap shear strength (LSS) testing, on porcine skin: a calcium metasilicate (CS1), and alpha tricalcium phosphate (αTCP) PMC. CS1 PCM bonded strongly to skin, reaching a peak LSS of 84, 132, and 154 KPa after curing for 0.5, 1.5, and 4 h, respectively. Cyanoacrylate and fibrin glues reached an LSS of 207 kPa and 33 kPa, respectively. αTCP PMCs reached a final LSS of ≈110 kPa. In soft tissues, stronger bond strengths were obtained with αTCP PMCs containing large amounts of amino acid (70-90 mol%), in contrast to prior studies in calcified tissues (30-50 mol%). When αTCP particle size was reduced by wet milling, and for CS1 PMCs, the strongest bonding was obtained with mole ratios of 30-50% phosphoserine. While PM-CPCs behave like stiff ceramics after setting, they bond to soft tissues, and warrant further investigation as tissue adhesives, particularly at the interface between hard and soft tissues.

17.
BMC Biomed Eng ; 1: 11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32903290

RESUMEN

BACKGROUND: Currently there are no standard models with which to evaluate the biomechanical performance of calcified tissue adhesives, in vivo. We present, herein, a pre-clinical murine distal femoral bone model for evaluating tissue adhesives intended for use in both osseous and osteochondral tissue reconstruction. RESULTS: Cylindrical cores (diameter (Ø) 2 mm (mm) × 2 mm depth), containing both cancellous and cortical bone, were fractured out from the distal femur and then reattached using one of two tissue adhesives. The adhesiveness of fibrin glue (Tisseeltm), and a novel, biocompatible, calcium phosphate-based tissue adhesive (OsStictm) were evaluated by pullout testing, in which glued cores were extracted and the peak force at failure recorded. The results show that Tisseel weakly bonded the metaphyseal bone cores, while OsStic produced > 30-fold higher mean peak forces at failure (7.64 Newtons (N) vs. 0.21 N). The failure modes were consistently disparate, with Tisseel failing gradually, while OsStic failed abruptly, as would be expected with a calcium-based material. Imaging of the bone/adhesive interface with microcomputed tomography revealed that, for OsStic, failure occurred more often within cancellous bone (75% of tested samples) rather than at the adhesive interface. CONCLUSIONS: Despite the challenges associated with biomechanical testing in small rodent models the preclinical ex-vivo test model presented herein is both sensitive and accurate. It enabled differences in tissue adhesive strength to be quantified even for very small osseous fragments (<Ø4mm). Importantly, this model can easily be scaled to larger animals and adapted to fracture fragment fixation in human bone. The present model is also compatible with other long-term in vivo evaluation methods (i.e. in vivo imaging, histological analysis, etc.).

18.
Materials (Basel) ; 11(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544596

RESUMEN

Calcium phosphate cements (CPCs) are clinically effective void fillers that are capable of bridging calcified tissue defects and facilitating regeneration. However, CPCs are completely synthetic/inorganic, unlike the calcium phosphate that is found in calcified tissues, and they lack an architectural organization, controlled assembly mechanisms, and have moderate biomechanical strength, which limits their clinical effectiveness. Herein, we describe a new class of bioinspired CPCs that can glue tissues together and bond tissues to metallic and polymeric biomaterials. Surprisingly, alpha tricalcium phosphate cements that are modified with simple phosphorylated amino acid monomers of phosphoserine (PM-CPCs) bond tissues up to 40-fold stronger (2.5⁻4 MPa) than commercial cyanoacrylates (0.1 MPa), and 100-fold stronger than surgical fibrin glue (0.04 MPa), when cured in wet-field conditions. In addition to adhesion, phosphoserine creates other novel properties in bioceramics, including a nanoscale organic/inorganic composite microstructure, and templating of nanoscale amorphous calcium phosphate nucleation. PM-CPCs are made of the biocompatible precursors calcium, phosphate, and amino acid, and these represent the first amorphous nano-ceramic composites that are stable in liquids.

19.
J Mech Behav Biomed Mater ; 77: 624-633, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29100205

RESUMEN

Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R2 = 0.79) was weaker than correlation with total cement porosity (R2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R2=1.00, R2=0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R2=0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited.


Asunto(s)
Materiales Biocompatibles/química , Cementos para Huesos/química , Tornillos Óseos , Animales , Fenómenos Biomecánicos , Placas Óseas , Fosfatos de Calcio/química , Bovinos , Fuerza Compresiva , Diseño de Equipo , Fijación Interna de Fracturas , Humanos , Ensayo de Materiales , Fosfatos/química , Porosidad , Polvos , Estrés Mecánico
20.
PLoS One ; 11(10): e0163530, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27701417

RESUMEN

Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100µM and 0.1µM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100µM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100µM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Diferenciación Celular/efectos de los fármacos , Difosfatos/farmacología , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/metabolismo , Animales , Biomarcadores , Calcificación Fisiológica , Línea Celular , Proliferación Celular/efectos de los fármacos , Difosfatos/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA