Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Stem Cell Rev Rep ; 20(1): 159-174, 2024 01.
Article En | MEDLINE | ID: mdl-37962698

Mesenchymal stem cells (MSCs) are well known for their beneficial effects, differentiation capacity and regenerative potential. Dental-derived MSCs (DSCs) are more easily accessible and have a non-invasive isolation method rather than MSCs isolated from other sources (umbilical cord, bone marrow, and adipose tissue). In addition, DSCs appear to have a relevant neuro-regenerative potential due to their neural crest origin. However, it is now known that the beneficial effects of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules (neurotrophic factors) released in the conditioned medium (CM) or in the extracellular vesicles (EVs) in particular exosomes (Exos). In this review, we described the similarities and differences between various DSCs. Our focus was on the secretome of DSCs and their applications in cell therapy for neurological disorders. For neuro-regenerative purposes, the secretome of different DSCs has been tested. Among these, the secretome of dental pulp stem cells and stem cells from human exfoliated deciduous teeth have been the most widely studied. Both CM and Exos obtained from DSCs have been shown to promote neurite outgrowth and neuroprotective effects as well as their combination with scaffold materials (to improve their functional integration in the tissue). For these reasons, the secretome obtained from DSCs in combination with scaffold materials may represent a promising tissue engineering approach for neuroprotective and neuro-regenerative treatments.


Mesenchymal Stem Cells , Nervous System Diseases , Humans , Secretome , Tissue Engineering , Cell- and Tissue-Based Therapy , Nervous System Diseases/therapy
2.
Front Cell Dev Biol ; 11: 1274462, 2023.
Article En | MEDLINE | ID: mdl-38020931

Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein domains, known as lipid rafts, which are involved in a variety of cellular processes, including receptor-mediated signal transduction and cellular differentiation process. In this study, we analyzed the lipidic composition of human Dental Pulp-Derived Stem Cells (DPSCs), and the role of lipid rafts during the multilineage differentiation process. The relative quantification of lipid metabolites in the organic fraction of DPSCs, performed by Nuclear Magnetic Resonance (NMR) spectroscopy, showed that mono-unsaturated fatty acids (MUFAs) were the most representative species in the total pool of acyl chains, compared to polyunsatured fatty acids (PUFAs). In addition, the stimulation of DPSCs with different culture media induces a multilineage differentiation process, determining changes in the gangliosides pattern. To understand the functional role of lipid rafts during multilineage differentiation, DPSCs were pretreated with a typical lipid raft affecting agent (MßCD). Subsequently, DPSCs were inducted to differentiate into osteoblast, chondroblast and adipoblast cells with specific media. We observed that raft-affecting agent MßCD prevented AKT activation and the expression of lineage-specific mRNA such as OSX, PPARγ2, and SOX9 during multilineage differentiation. Moreover, this compound significantly prevented the tri-lineage differentiation induced by specific stimuli, indicating that lipid raft integrity is essential for DPSCs differentiation. These results suggest that lipid rafts alteration may affect the signaling pathway activated, preventing multilineage differentiation.

3.
Biomedicines ; 10(12)2022 Dec 02.
Article En | MEDLINE | ID: mdl-36551867

Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.

4.
Biomedicines ; 10(10)2022 Oct 14.
Article En | MEDLINE | ID: mdl-36289840

Tendon tissue engineering aims to develop effective implantable scaffolds, with ideally the native tissue's characteristics, able to drive tissue regeneration. This research focused on fabricating tendon-like PLGA 3D biomimetic scaffolds with highly aligned fibers and verifying their influence on the biological potential of amniotic epithelial stem cells (AECs), in terms of tenodifferentiation and immunomodulation, with respect to fleeces. The produced 3D scaffolds better resemble native tendon tissue, both macroscopically, microscopically, and biomechanically. From a biological point of view, these constructs were able to instruct AECs genotypically and phenotypically. In fact, cells engineered on 3D scaffolds acquired an elongated tenocyte-like morphology; this was different from control AECs, which retained their polygonal morphology. The boosted AECs tenodifferentiation by 3D scaffolds was confirmed by the upregulation of tendon-related genes (SCX, COL1 and TNMD) and TNMD protein expression. The produced constructs also prompted AECs' immunomodulatory potential, both at the gene and paracrine level. This enhanced immunomodulatory profile was confirmed by a greater stimulatory effect on THP-1-activated macrophages. These biological effects have been related to the mechanotransducer YAP activation evidenced by its nuclear translocation. Overall, these results support the biomimicry of PLGA 3D scaffolds, revealing that not only fiber alignment but also scaffold topology provide an in vitro favorable tenodifferentiative and immunomodulatory microenvironment for AECs that could potentially stimulate tendon regeneration.

5.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Article En | MEDLINE | ID: mdl-35740031

In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs), a promising antioxidant nanomaterial, may contrast retinal vascular alterations induced by oxidative damage in vitro and in vivo. For the in vivo experiments, the light damage (LD) animal model of Age-Related Macular Degeneration (AMD) was used and the CeO2-NPs were intravitreally injected. CeO2-NPs significantly decreased vascular endothelial growth factor (VEGF) protein levels, reduced neovascularization in the deep retinal plexus, and inhibited choroidal sprouting into the photoreceptor layer. The in vitro experiments were performed on human retinal pigment epithelial (ARPE-19) cells challenged with H2O2; we demonstrated that CeO2-NPs reverted H2O2-induced oxidative stress-dependent effects on this cell model. We further investigated the RPE-endothelial cells interaction under oxidative stress conditions in the presence or absence of CeO2-NPs through two experimental paradigms: (i) treatment of human umbilical vein endothelial cells (HUVECs) with conditioned media from ARPE-19 cells, and (ii) coculture of ARPE-19 and HUVECs. In both experimental conditions, CeO2-NPs were able to revert the detrimental effect of H2O2 on angiogenesis in vitro by realigning the level of tubule formation to that of the control. Altogether, our results indicate, for the first time, that CeO2-NPs can counteract retinal neovascularization and may be a new therapeutic strategy for the treatment of wet AMD.

6.
Biomedicines ; 10(5)2022 May 03.
Article En | MEDLINE | ID: mdl-35625792

As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.

7.
Cells ; 11(3)2022 01 28.
Article En | MEDLINE | ID: mdl-35159271

Amniotic epithelial stem cells (AECs) are largely studied for their pro-regenerative properties. However, it remains undetermined if low oxygen (O2) levels that AECs experience in vivo can be of value in maintaining their biological properties after isolation. To this aim, the present study has been designed to evaluate the effects of a hypoxia-mimetic agent, cobalt chloride (CoCl2), on AECs' stemness and angiogenic activities. First, a CoCl2 dose-effect was performed to select the concentration able to induce hypoxia, through HIF-1α stabilization, without promoting any cytotoxicity effect assessed through the analysis of cell vitality, proliferation, and apoptotic-related events. Then, the identified CoCl2 dose was evaluated on the expression and angiogenic properties of AECs' stemness markers (OCT-4, NANOG, SOX-2) by analysing VEGF expression, angiogenic chemokines' profiles, and AEC-derived conditioned media activity through an in vitro angiogenic xeno-assay. Results demonstrated that AECs are sensitive to the cytotoxicity effects of CoCl2. The unique concentration leading to HIF-1α stabilization and nuclear translocation was 10 µM, preserving cell viability and proliferation up to 48 h. CoCl2 exposure did not modulate stemness markers in AECs while progressively decreasing VEGF expression. On the contrary, CoCl2 treatment promoted a significant short-term release of angiogenic chemokines in culture media (CM). The enrichment in bio-active factors was confirmed by the ability of CoCl2-derived CM to induce HUVEC growth and the cells' organization in tubule-like structures. These findings demonstrate that an appropriate dose of CoCl2 can be adopted as a hypoxia-mimetic agent in AECs. The short-term, chemical-induced hypoxic condition can be targeted to enhance AECs' pro-angiogenic properties by providing a novel approach for stem cell-free therapy protocols.


Hypoxia , Vascular Endothelial Growth Factor A , Animals , Cobalt , Culture Media, Conditioned/pharmacology , Epithelial Cells/metabolism , Oxygen , Sheep , Vascular Endothelial Growth Factor A/metabolism
8.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 26.
Article En | MEDLINE | ID: mdl-34832864

Frequent relapses and therapeutic resistance make the management of glioblastoma (GBM, grade IV glioma), extremely difficult. Therefore, it is necessary to develop new pharmacological compounds to be used as a single treatment or in combination with current therapies in order to improve their effectiveness and reduce cytotoxicity for non-tumor cells. SFX-01 is a fully synthetic and stabilized pharmaceutical product containing the α-cyclodextrin that delivers the active compound 1-isothiocyanato-4-methyl-sulfinylbutane (SFN) and maintains biological activities of SFN. In this study, we verified whether SFX-01 was active in GBM preclinical models. Our data demonstrate that SFX-01 reduced cell proliferation and increased cell death in GBM cell lines and patient-derived glioma initiating cells (GICs) with a stem cell phenotype. The antiproliferative effects of SFX-01 were associated with a reduction in the stemness of GICs and reversion of neural-to-mesenchymal trans-differentiation (PMT) closely related to epithelial-to-mesenchymal trans-differentiation (EMT) of epithelial tumors. Commonly, PMT reversion decreases the invasive capacity of tumor cells and increases the sensitivity to pharmacological and instrumental therapies. SFX-01 induced caspase-dependent apoptosis, through both mitochondrion-mediated intrinsic and death-receptor-associated extrinsic pathways. Here, we demonstrate the involvement of reactive oxygen species (ROS) through mediating the reduction in the activity of essential molecular pathways, such as PI3K/Akt/mTOR, ERK, and STAT-3. SFX-01 also reduced the in vivo tumor growth of subcutaneous xenografts and increased the disease-free survival (DFS) and overall survival (OS), when tested in orthotopic intracranial GBM models. These effects were associated with reduced expression of HIF1α which, in turn, down-regulates neo-angiogenesis. So, SFX-01 may have potent anti-glioma effects, regulating important aspects of the biology of this neoplasia, such as hypoxia, stemness, and EMT reversion, which are commonly activated in this neoplasia and are responsible for therapeutic resistance and glioma recurrence. SFX-01 deserves to be considered as an emerging anticancer agent for the treatment of GBM. The possible radio- and chemo sensitization potential of SFX-01 should also be evaluated in further preclinical and clinical studies.

9.
Antioxidants (Basel) ; 10(5)2021 May 01.
Article En | MEDLINE | ID: mdl-34062923

Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.

10.
Stem Cell Rev Rep ; 17(5): 1635-1646, 2021 10.
Article En | MEDLINE | ID: mdl-33829353

A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.


Dental Pulp , Mesenchymal Stem Cells , Cell Differentiation/physiology , Endothelial Cells , Mesenchymal Stem Cells/cytology , Pericytes/physiology , Stem Cells/cytology
11.
Biomedicines ; 9(2)2021 Feb 01.
Article En | MEDLINE | ID: mdl-33535557

Despite the paradigmatic shift occurred in recent years for defined molecular subtypes in the metastatic setting treatment, colorectal cancer (CRC) still remains an incurable disease in most of the cases. Therefore, there is an urgent need for new tools and biomarkers for both early tumor diagnosis and to improve personalized treatment. Thus, liquid biopsy has emerged as a minimally invasive tool that is capable of detecting genomic alterations from primary or metastatic tumors, allowing the prognostic stratification of patients, the detection of the minimal residual disease after surgical or systemic treatments, the monitoring of therapeutic response, and the development of resistance, establishing an opportunity for early intervention before imaging detection or worsening of clinical symptoms. On the other hand, preclinical and clinical evidence demonstrated the role of gut microbiota dysbiosis in promoting inflammatory responses and cancer initiation. Altered gut microbiota is associated with resistance to chemo drugs and immune checkpoint inhibitors, whereas the use of microbe-targeted therapies including antibiotics, pre-probiotics, and fecal microbiota transplantation can restore response to anticancer drugs, promote immune response, and therefore support current treatment strategies in CRC. In this review, we aim to summarize preclinical and clinical evidence for the utilization of liquid biopsy and gut microbiota in CRC.

12.
J Cancer Res Clin Oncol ; 146(6): 1427-1440, 2020 Jun.
Article En | MEDLINE | ID: mdl-32300865

PURPOSE: RAS mutational status in colorectal cancer (CRC) represents a predictive biomarker of response to anti-EGFR therapy, but to date it cannot be considered an appropriate biomarker of response to anti-VEGF therapy. To elucidate the function of K-Ras in promoting angiogenesis, the effect of conditioned media from KRAS mutated and wild type colon cancer cell lines on HUVECs tubule formation ability and the correspondent production of pro-angiogenic factors have been evaluated by a specific ELISA assay. METHODS: Ras-activated signaling pathways were compared by western blot analysis and RTq-PCR. In addition, VEGF, IL-8, bFGF and HIF-1α expression was determined in K-RAS silenced cells. Furthermore, we conducted an observational study in a cohort of RAS mutated metastatic CRC patients, treated with first-line bevacizumab-based regimens, evaluating VEGF-A and IL-8 plasma levels at baseline, and during treatment. RESULTS: K-RAS promotes VEGF production by cancer cell lines. At the transcriptional level, this is reflected to a K-RAS dependent HIF-1α over-expression. Moreover, the HIF-1α, VEGF and FGF expression inhibition in KRAS knocked cells confirmed these results. Within the clinical part, no statistically significant correlation has been found between progression-free survival (PFS) and VEGF-A/IL-8 levels, but we cannot exclude that these biomarkers could be further investigated as predictive or prognostic biomarkers in this setting. CONCLUSION: Our study confirmed the direct involvement of K-Ras in promoting angiogenesis into colon cancer cell lines.


Angiogenesis Inducing Agents/metabolism , Biomarkers, Tumor/metabolism , Colonic Neoplasms/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , Culture Media, Conditioned , Gene Silencing , Genes, ras , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-8/metabolism , Models, Biological , Mutation , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
13.
Stem Cells Dev ; 28(10): 695-706, 2019 05 15.
Article En | MEDLINE | ID: mdl-30887879

Dental pulp has been revealed as an accessible and a rich source of mesenchymal stem cells (MSCs) and its biological potential is currently under intense investigation. MSCs from dental pulp stem cells (DPSCs) have been indicated as a heterogeneous population oriented not only in repairing dentine but also in maintaining vascular and nervous homeostasis of the teeth. We sought to verify the phenotype of cells isolated from dental pulp of young donors and to investigate in vitro their role as pericyte-like cells. Specifically, we evaluated how culture conditions can modulate expression of pericyte markers in DPSCs and their capacity to stabilize endothelial tubes in vitro. DPSCs cultured in standard conditions expressed MSC markers and demonstrated to contain a population expressing the pericyte marker NG2. These DPSCs were associated with low sprouting capacity in extra-cellular (EC) Matrix and limited ability in retaining tubes formed by endothelial cells in a coculture angiogenesis model. When cultured in endothelial growth medium (EGM)-2, DPSCs significantly upregulated NG2, and partially alpha-smooth muscle actin. The resulting population conserved the stem marker CD73, but was negative for calponin and endothelial markers. EGM-2-conditioned DPSCs showed a higher sprouting ability in EC Matrix and efficient association with human umbilical vein endothelial cells allowing the partial retention of endothelial tubes for several days. Among growth factors contained in EGM-2 we identified basic fibroblast growth factor (bFGF) as mainly responsible for NG2 upregulation and long-term stabilization of endothelial tubes. According to the in vitro analysis, DPSCs represent an effective source of pericytes and the appropriate culture conditions could result in a population with a promising ability to stabilize vessels and promote vascular maturation.


Dental Pulp/cytology , Dentin/cytology , Human Umbilical Vein Endothelial Cells/physiology , Mesenchymal Stem Cells/cytology , Pericytes/cytology , 5'-Nucleotidase/metabolism , Antigens/metabolism , Cell Differentiation/physiology , GPI-Linked Proteins/metabolism , Humans , Pericytes/physiology , Proteoglycans/metabolism
...