Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Appl Microbiol Biotechnol ; 108(1): 62, 2024 Dec.
Article En | MEDLINE | ID: mdl-38183486

In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.


Metal Nanoparticles , Oxidoreductases , Gold , Glucose 1-Dehydrogenase , Bacteria
2.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Article En | MEDLINE | ID: mdl-35889727

The outermost component of cell envelopes of most bacteria and almost all archaea comprise a protein lattice, which is termed Surface (S-)layer. The S-layer lattice constitutes a highly porous structure with regularly arranged pores in the nm-range. Some archaea thrive in extreme milieus, thus producing highly stable S-layer protein lattices that aid in protecting the organisms. In the present study, fragments of the cell envelope from the hyperthermophilic acidophilic archaeon Saccharolobus solfataricus P2 (SSO) have been isolated by two different methods and characterized. The organization of the fragments and the molecular sieving properties have been elucidated by transmission electron microscopy and by determining the retention efficiency of proteins varying in size, respectively. The porosity of the archaeal S-layer fragments was determined to be 45%. S-layer fragments of SSO showed a retention efficiency of up to 100% for proteins having a molecular mass of ≥ 66 kDa. Moreover, the extraction costs for SSO fragments have been reduced by more than 80% compared to conventional methods, which makes the use of these archaeal S-layer material economically attractive.

3.
J Chromatogr A ; 1673: 463058, 2022 Jun 21.
Article En | MEDLINE | ID: mdl-35468372

Cycle stability is important for preparative chromatography resins. Up to 200 cycles have been reported for Protein A affinity resins when used under optimized operating conditions. Through engineered ligands, alkaline resistant Protein A resins are available that can withstand repeated cleaning-in-place cycles with even 1 M NaOH. This enables an increase of purification cycles through the reduction of fouling while maintaining high binding capacities. Previously, non-intuitive changes in dynamic binding capacity after alkaline treatment have been observed for these novel Protein A resins, where sharper breakthrough curves and increased capacities were reported. In this work, we have systematically investigated resins with both low and high alkaline stability and studied the changes in static and dynamic binding capacities and elution behavior. We propose that the observed mass transfer increases of up to 40% are due to a switch in diffusion mechanism, as shown by confocal laser scanning microscopy. Based on our results, only a small window of alkaline treatment conditions exists, where dynamic binding capacity can be increased. Our findings may help to explain previous findings and observations of others.


Staphylococcal Protein A , Chromatography, Affinity/methods , Diffusion , Ligands , Staphylococcal Protein A/chemistry
4.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Article En | MEDLINE | ID: mdl-34065322

Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (-24.4 +/- 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/- 1.25 nm after 5 min and 25.0 +/- 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.

5.
Front Plant Sci ; 10: 777, 2019.
Article En | MEDLINE | ID: mdl-31316529

Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production.

6.
J Invest Dermatol ; 139(12): 2425-2436.e5, 2019 12.
Article En | MEDLINE | ID: mdl-31220456

Extracellular vesicles (EVs) and their miRNA cargo are intercellular communicators transmitting their pleiotropic messages between different cell types, tissues, and body fluids. Recently, they have been reported to contribute to skin homeostasis and were identified as members of the senescence-associated secretory phenotype of human dermal fibroblasts. However, the role of EV-miRNAs in paracrine signaling during skin aging is yet unclear. Here we provide evidence for the existence of small EVs in the human skin and dermal interstitial fluid using dermal open flow microperfusion and show that EVs and miRNAs are transferred from dermal fibroblasts to epidermal keratinocytes in 2D cell culture and in human skin equivalents. We further show that the transient presence of senescent fibroblast derived small EVs accelerates scratch closure of epidermal keratinocytes, whereas long-term incubation impairs keratinocyte differentiation in vitro. Finally, we identify vesicular miR-23a-3p, highly secreted by senescent fibroblasts, as one contributor of the EV-mediated effect on keratinocytes in in vitro wound healing assays. To summarize, our findings support the current view that EVs and their miRNA cargo are members of the senescence-associated secretory phenotype and, thus, regulators of human skin homeostasis during aging.


Extracellular Vesicles/metabolism , Keratinocytes/metabolism , MicroRNAs/metabolism , Skin Aging/genetics , Blotting, Western , Cell Communication/genetics , Cell Differentiation , Cell Proliferation , Cells, Cultured , Extracellular Vesicles/ultrastructure , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Humans , Keratinocytes/ultrastructure , Microscopy, Electron, Transmission
7.
Allergy ; 74(2): 246-260, 2019 02.
Article En | MEDLINE | ID: mdl-30035810

BACKGROUND: In high-risk populations, allergen-specific prophylaxis could protect from sensitization and subsequent development of allergic disease. However, such treatment might itself induce sensitization and allergies, thus requiring hypoallergenic vaccine formulations. We here characterized the preventive potential of virus-like nanoparticles (VNP) expressing surface-exposed or shielded allergens. METHODS: Full-length major mugwort pollen allergen Art v 1 was selectively targeted either to the surface or to the inner side of the lipid bilayer envelope of VNP. Upon biochemical and immunological analysis, their preventive potential was determined in a humanized mouse model of mugwort pollen allergy. RESULTS: Virus-like nanoparticles expressing shielded version of Art v 1, in contrast to those expressing surface-exposed Art v 1, were hypoallergenic as they hardly induced degranulation of rat basophil leukemia cells sensitized with Art v 1-specific mouse or human IgE. Both VNP versions induced proliferation and cytokine production of allergen-specific T cells in vitro. Upon intranasal application in mice, VNP expressing surface-exposed but not shielded allergen induced allergen-specific antibodies, including IgE. Notably, preventive treatment with VNP expressing shielded allergen-protected mice from subsequent sensitization with mugwort pollen extract. Protection was associated with a Th1/Treg-dominated cytokine response, increased Foxp3+ Treg numbers in lungs, and reduced lung resistance when compared to mice treated with empty particles. CONCLUSION: Virus-like nanoparticles represent a novel and versatile platform for the in vivo delivery of allergens to selectively target T cells and prevent allergies without inducing allergic reactions or allergic sensitization.


Allergens/immunology , Hypersensitivity/immunology , Hypersensitivity/prevention & control , Nanoparticles , Vaccines, Virus-Like Particle/immunology , Allergens/administration & dosage , Animals , Antigens, Plant/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Female , HEK293 Cells , Humans , Immunization , Mice , Mice, Transgenic , Models, Biological , Plant Proteins/immunology , Vaccines, Virus-Like Particle/administration & dosage
8.
Aging (Albany NY) ; 10(5): 1103-1132, 2018 05 19.
Article En | MEDLINE | ID: mdl-29779019

Loss of functionality during aging of cells and organisms is caused and accompanied by altered cell-to-cell communication and signalling. One factor thereby is the chronic accumulation of senescent cells and the concomitant senescence-associated secretory phenotype (SASP) that contributes to microenvironment remodelling and a pro-inflammatory status. While protein based SASP factors have been well characterized, little is known about small extracellular vesicles (sEVs) and their miRNA cargo. Therefore, we analysed secretion of sEVs from senescent human dermal fibroblasts and catalogued the therein contained miRNAs. We observed a four-fold increase of sEVs, with a concomitant increase of >80% of all cargo miRNAs. The most abundantly secreted miRNAs were predicted to collectively target mRNAs of pro-apoptotic proteins, and indeed, senescent cell derived sEVs exerted anti-apoptotic activity. In addition, we identified senescence-specific differences in miRNA composition of sEVs, with an increase of miR-23a-5p and miR-137 and a decrease of miR-625-3p, miR-766-3p, miR-199b-5p, miR-381-3p, miR-17-3p. By correlating intracellular and sEV-miRNAs, we identified miRNAs selectively retained in senescent cells (miR-21-3p and miR-17-3p) or packaged specifically into senescent cell derived sEVs (miR-15b-5p and miR-30a-3p). Therefore, we suggest sEVs and their miRNA cargo to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.


Apoptosis/physiology , Cellular Senescence/physiology , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Cells, Cultured , Fibroblasts/metabolism , Humans
9.
Sensors (Basel) ; 18(1)2018 Jan 10.
Article En | MEDLINE | ID: mdl-29320454

Herein we report novel approaches to the molecular imprinting of proteins utilizing templates sizing around 10 nm and some 100 nm. The first step comprised synthesizing nanoparticles of molecularly imprinted polymers (MIP) towards bovine serum albumin (BSA) and characterizing them according to size and binding capacity. In a second step, they were utilized as templates. Quartz crystal microbalances (QCM) coated with MIP thin films based on BSA MIP nanoparticles lead to a two-fold increase in sensor responses, compared with the case of directly using the protein as the template. This also established that individual BSA molecules exhibit different "epitopes" for molecular imprinting on their outer surfaces. In light of this knowledge, a possible MIP-based biomimetic assay format was tested by exposing QCM coated with BSA MIP thin films to mixtures of BSA and imprinted and non-imprinted polymer (NIP) nanoparticles. At high protein concentrations (1000 ppm) measurements revealed aggregation behavior, i.e., BSA binding MIP NP onto the MIP surface. This increased sensor responses by more than 30% during proof of concept measurements. At lower a BSA concentration (500 ppm), thin films and particles revealed competitive behavior.


Molecular Imprinting , Nanoparticles , Polymers , Quartz Crystal Microbalance Techniques , Serum Albumin, Bovine
10.
Beilstein J Nanotechnol ; 8: 91-98, 2017.
Article En | MEDLINE | ID: mdl-28144568

Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1H,1H,2H,2H-perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP) as found in bacteria. Complementary atomic force microscopy (AFM) experiments corroborate these findings and reveal the impact on the final structure achieved.

11.
Int J Mol Sci ; 18(2)2017 Feb 14.
Article En | MEDLINE | ID: mdl-28216572

The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered-after washing away the unbound S-layer protein-by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers.


Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Adsorption , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallization , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Protein Binding , Protein Multimerization , Recombinant Proteins , Surface Properties
12.
Nanotechnology ; 25(31): 312001, 2014 Aug 08.
Article En | MEDLINE | ID: mdl-25030207

Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.


Cell Wall/chemistry , Membrane Glycoproteins/chemistry , Archaea/ultrastructure , Archaeal Proteins/chemistry , Bacteria/ultrastructure , Bacterial Proteins/chemistry , Biomimetics , Biotechnology , Liposomes , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/ultrastructure , Nanocapsules , Nanoparticles , Nanotechnology , Recombinant Proteins/chemistry
13.
FEMS Microbiol Rev ; 38(5): 823-64, 2014 Sep.
Article En | MEDLINE | ID: mdl-24483139

Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.


Archaea/physiology , Bacterial Physiological Phenomena , Membrane Glycoproteins/metabolism , Archaea/chemistry , Archaea/genetics , Archaea/ultrastructure , Bacteria/chemistry , Bacteria/genetics , Bacteria/ultrastructure , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/ultrastructure
14.
Methods Appl Fluoresc ; 2(2): 024002, 2014 Apr 10.
Article En | MEDLINE | ID: mdl-29148466

Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

15.
PLoS One ; 8(11): e80038, 2013.
Article En | MEDLINE | ID: mdl-24312197

The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, ß-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes' expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage ß-1,3;1,4 glucan synthase celA together with the ß-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.


Aspergillus nidulans/drug effects , Aspergillus nidulans/genetics , Cell Wall/genetics , Cell Wall/ultrastructure , Glucosyltransferases/antagonists & inhibitors , Nitriles/pharmacology , Aspergillus nidulans/growth & development , Gene Expression Regulation, Fungal/drug effects , Hyphae/drug effects , Hyphae/genetics , Hyphae/ultrastructure
16.
Lab Chip ; 13(9): 1780-9, 2013 May 07.
Article En | MEDLINE | ID: mdl-23478879

In the current work we have developed a lab-on-a-chip containing embedded amperometric sensors in four microreactors that can be addressed individually and that are coated with crystalline surface protein monolayers to provide a continuous, stable, reliable and accurate detection of blood glucose. It is envisioned that the microfluidic device will be used in a feedback loop mechanism to assess natural variations in blood glucose levels during hemodialysis to allow the individual adjustment of glucose. Reliable and accurate detection of blood glucose is accomplished by simultaneously performing (a) blood glucose measurements, (b) autocalibration routines, (c) mediator-interferences detection, and (d) background subtractions. The electrochemical detection of blood glucose variations in the absence of electrode fouling events is performed by integrating crystalline surface layer proteins (S-layer) that function as an efficient antifouling coating, a highly-oriented immobilization matrix for biomolecules and an effective molecular sieve with pore sizes of 4 to 5 nm. We demonstrate that the S-layer protein SbpA (from Lysinibacillus sphaericus CCM 2177) readily forms monomolecular lattice structures at the various microchip surfaces (e.g. glass, PDMS, platinum and gold) within 60 min, eliminating unspecific adsorption events in the presence of human serum albumin, human plasma and freshly-drawn blood samples. The highly isoporous SbpA-coating allows undisturbed diffusion of the mediator between the electrode surface, thus enabling bioelectrochemical measurements of glucose concentrations between 500 µM to 50 mM (calibration slope δI/δc of 8.7 nA mM(-1)). Final proof-of-concept implementing the four microfluidic microreactor design is demonstrated using freshly drawn blood. Accurate and drift-free assessment of blood glucose concentrations (6. 4 mM) is accomplished over 130 min at 37 °C using immobilized enzyme glucose oxidase by calculating the difference between autocalibration (10 mM glc) and background measurements. The novel combination of biologically-derived nanostructured surfaces with microchip technology constitutes a powerful new tool for multiplexed analysis of complex samples.


Blood Glucose/analysis , Electrochemical Techniques , Microfluidic Analytical Techniques , Nanotechnology , Bacillaceae/chemistry , Bacterial Proteins/chemistry , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/methods , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Humans , Membrane Glycoproteins/chemistry , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Nanotechnology/instrumentation , Nanotechnology/methods
17.
J Bacteriol ; 195(10): 2408-14, 2013 May.
Article En | MEDLINE | ID: mdl-23504021

Crystalline cell surface layers (S-layers) represent a natural two-dimensional (2D) protein self-assembly system with nanometer-scale periodicity that decorate many prokaryotic cells. Here, we analyze the S-layer on intact bacterial cells of the Gram-positive organism Geobacillus stearothermophilus ATCC 12980 and the Gram-negative organism Aquaspirillum serpens MW5 by small-angle X-ray scattering (SAXS) and relate it to the structure obtained by transmission electron microscopy (TEM) after platinum/carbon shadowing. By measuring the scattering pattern of X rays obtained from a suspension of bacterial cells, integral information on structural elements such as the thickness and lattice parameters of the S-layers on intact, hydrated cells can be obtained nondestructively. In contrast, TEM of whole mounts is used to analyze the S-layer lattice type and parameters as well as the physical structure in a nonaqueous environment and local information on the structure is delivered. Application of SAXS to S-layer research on intact bacteria is a challenging task, as the scattering volume of the generally thin (3- to 30-nm) bacterial S-layers is low in comparison to the scattering volume of the bacterium itself. For enhancement of the scattering contrast of the S-layer in SAXS measurement, either silicification (treatment with tetraethyl orthosilicate) is used, or the difference between SAXS signals from an S-layer-deficient mutant and the corresponding S-layer-carrying bacterium is used for determination of the scattering signal. The good agreement of the SAXS and TEM data shows that S-layers on the bacterial cell surface are remarkably stable.


Scattering, Small Angle , Bacteria/ultrastructure , Comamonadaceae , Geobacillus stearothermophilus , Microscopy, Electron, Transmission , X-Rays
18.
Int J Mol Sci ; 14(2): 2484-501, 2013 Jan 25.
Article En | MEDLINE | ID: mdl-23354479

Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports.

19.
Biosens Bioelectron ; 40(1): 32-7, 2013 Feb 15.
Article En | MEDLINE | ID: mdl-22727519

There is a growing demand for functional layers for the immobilization of (bio)molecules on different kinds of substrates in the field of biosensors, microarrays, and lab-on-a-chip development. These functional coatings should have the ability to specifically bind (bio)molecules with a high binding efficiency, while showing low unspecific binding during the following assay. In this paper we present rSbpA surface layer proteins (S-layer proteins) as a versatile immobilization layer for the development of DNA microarrays. S-layer proteins show the ability to reassemble into two-dimensional arrays on solid surfaces and their functional groups, such as carboxylic groups, are repeated with the periodicity of the lattice, allowing for immobilization of other (bio)molecules. Different fluorescently labeled amino functionalized DNA oligomers were covalently linked to the S-layer matrices to allow the characterization of DNA binding on S-layers. Hybridization and dissociation of DNA-oligomers were studied on S-layer coated slides, revealing low levels of unspecific adsorption of DNA on S-layer based immobilization matrices. In the following the principle was transferred to a DNA microarray design showing successful spotting and hybridization on whole microarray slides. Besides common laser scanning for fluorescence detection, S-layer based microarrays were evaluated with a compact, low cost platform for direct fluorescence imaging based on surface plasmon enhanced fluorescence excitation. It could be shown that S-layer protein layers are promising as immobilization matrices for the development of biosensors and microarrays.


Biosensing Techniques/instrumentation , DNA/chemistry , DNA/genetics , Membrane Glycoproteins/chemistry , Oligonucleotide Array Sequence Analysis/instrumentation , Spectrometry, Fluorescence/instrumentation , Surface Plasmon Resonance/instrumentation , Coated Materials, Biocompatible/chemistry , Crystallization/methods , DNA/analysis , Equipment Design , Equipment Failure Analysis , Protein Binding , Reproducibility of Results , Sensitivity and Specificity
20.
J Microbiol Biotechnol ; 22(9): 1271-8, 2012 Sep.
Article En | MEDLINE | ID: mdl-22814503

Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.


Bacterial Proteins/chemistry , Green Fluorescent Proteins/chemistry , Membrane Glycoproteins/chemistry , Recombinant Fusion Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Calorimetry, Differential Scanning , Escherichia coli/genetics , Escherichia coli/metabolism , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kinetics , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Periplasm/genetics , Periplasm/metabolism , Protein Folding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
...