Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19485, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945667

RESUMEN

This study conducted a simulative analysis of different hybrid perovskite solar cells with various hybrid electron transport layers (ETL) and hole transport layers (HTL). The electron transport layer boosts durability, lowers production costs, increases stability, improves light absorption, and increases efficiency. Hybrid ETLs are taken into consideration to improve the device's performance. The selected hybrid ETLs (PCBM-SnS2, TiO2-SnO2, and PCBM-PCPB) were modeled with four hybrid perovskite absorbers (CsPbI3, FAPbI3, MAPbI3, and FAMAPbI3) and five HTLs (PEDOT: PSS, CuI, Spiro-OMeTAD, CBTS, and NiO). Three sets of solar cells are found to be the most effective configurations after investigating over sixty different combinations of perovskite solar cell architectures. The structures show CBTS as the efficient HTL for FAMAPbI3 with all three hybrid ETLs. Besides, a holistic analysis of the effect of several factors such as the defect density and thickness of the absorber layer, temperature, parasitic resistances, capacitance, Mott-Schottky, impedance, conduction band offset, and current density-voltage and quantum efficiency characteristics is performed. The results show a maximum power conversion efficiency of 25.57%, 26.35%, and 23.36% with PCBM-SnS2, TiO2-SnO2, and PCBM-PCPB respectively. Among the studied hybrid ETLs, perovskite solar cell associated with TiO2-SnO2 has depicted a superior performance (Voc = 1.12 V, Jsc = 26.88 mA/cm2, FF = 87.27%). The efficiency of the perovskite solar cell using this study has been drastically enhanced compared to the previous experimental report. The proposed strategy provides a new avenue for attaining clean energy and allows researchers to pave the way for further design optimization to obtain high-performance solar cell devices.

2.
Sci Rep ; 10(1): 2151, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034226

RESUMEN

This paper reports on reduced graphene oxide (rGO), tin oxide (SnO2) and polyvinylidene fluoride (PVDF) tertiary nanocomposite thick film based flexible gas sensor. The nanocomposite of 0.90(PVDF) - 0.10[x(SnO2) - (1 - x)rGO] with different weight percentages (x = 0, 0.15, 0.30, 0.45, 0.6, 0.75, 0.90 and 1) have been prepared by the hot press method. Chromium (Cr) has been deposited on the surface by using E-beam evaporation system, which is used as electrode of the device. Crystal structure, morphology, and electrical characteristics of the device have been explored for the technological application. A correlation between crystallinity, morphology, and electrical properties with these thick films has also been established. The device has been tested at different hydrogen (H2) gas concentration as well as at different response times. A superior response of 0.90(PVDF) - 0.10[0.75(SnO2) - 0.25 rGO] nanocomposite thick film has been observed. Hence, this composition is considered as optimized tertiary nanocomposite for the hydrogen gas sensor application. The sensor response of 49.2 and 71.4% with response time 34 sec and 52 sec for 100 PPM and 1000 PPM H2 gas concentration respectively have been obtained. First time a new kind of low cost and flexible polymer based nanocomposite thick film gas sensor has been explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA