Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6365, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821448

RESUMEN

Cobalamin-dependent methionine synthase (MS) is a key enzyme in methionine and folate one-carbon metabolism. MS is a large multi-domain protein capable of binding and activating three substrates: homocysteine, folate, and S-adenosylmethionine for methylation. Achieving three chemically distinct methylations necessitates significant domain rearrangements to facilitate substrate access to the cobalamin cofactor at the right time. The distinct conformations required for each reaction have eluded structural characterization as its inherently dynamic nature renders structural studies difficult. Here, we use a thermophilic MS homolog (tMS) as a functional MS model. Its exceptional stability enabled characterization of MS in the absence of cobalamin, marking the only studies of a cobalamin-binding protein in its apoenzyme state. More importantly, we report the high-resolution full-length MS structure, ending a multi-decade quest. We also capture cobalamin loading in crystallo, providing structural insights into holoenzyme formation. Our work paves the way for unraveling how MS orchestrates large-scale domain rearrangements crucial for achieving challenging chemistries.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Metionina , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Ácido Fólico , Vitamina B 12/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35058356

RESUMEN

Pseudouridine (Ψ) is a ubiquitous RNA modification incorporated by pseudouridine synthase (Pus) enzymes into hundreds of noncoding and protein-coding RNA substrates. Here, we determined the contributions of substrate structure and protein sequence to binding and catalysis by pseudouridine synthase 7 (Pus7), one of the principal messenger RNA (mRNA) modifying enzymes. Pus7 is distinct among the eukaryotic Pus proteins because it modifies a wider variety of substrates and shares limited homology with other Pus family members. We solved the crystal structure of Saccharomyces cerevisiae Pus7, detailing the architecture of the eukaryotic-specific insertions thought to be responsible for the expanded substrate scope of Pus7. Additionally, we identified an insertion domain in the protein that fine-tunes Pus7 activity both in vitro and in cells. These data demonstrate that Pus7 preferentially binds substrates possessing the previously identified UGUAR (R = purine) consensus sequence and that RNA secondary structure is not a strong requirement for Pus7-binding. In contrast, the rate constants and extent of Ψ incorporation are more influenced by RNA structure, with Pus7 modifying UGUAR sequences in less-structured contexts more efficiently both in vitro and in cells. Although less-structured substrates were preferred, Pus7 fully modified every transfer RNA, mRNA, and nonnatural RNA containing the consensus recognition sequence that we tested. Our findings suggest that Pus7 is a promiscuous enzyme and lead us to propose that factors beyond inherent enzyme properties (e.g., enzyme localization, RNA structure, and competition with other RNA-binding proteins) largely dictate Pus7 substrate selection.


Asunto(s)
Secuencia de Aminoácidos , Sitios de Unión , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dominio Catalítico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN de Hongos/química , ARN de Hongos/genética , ARN Mensajero/química , ARN Mensajero/genética , Estrés Fisiológico , Relación Estructura-Actividad , Especificidad por Sustrato , Temperatura , Termodinámica
3.
Science ; 366(6465): 589-593, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672889

RESUMEN

Itaconate is an immunometabolite with both anti-inflammatory and bactericidal effects. Its coenzyme A (CoA) derivative, itaconyl-CoA, inhibits B12-dependent methylmalonyl-CoA mutase (MCM) by an unknown mechanism. We demonstrate that itaconyl-CoA is a suicide inactivator of human and Mycobacterium tuberculosis MCM, which forms a markedly air-stable biradical adduct with the 5'-deoxyadenosyl moiety of the B12 coenzyme. Termination of the catalytic cycle in this way impairs communication between MCM and its auxiliary repair proteins. Crystallography and spectroscopy of the inhibited enzyme are consistent with a metal-centered cobalt radical ~6 angstroms away from the tertiary carbon-centered radical and suggest a means of controlling radical trajectories during MCM catalysis. Mycobacterial MCM thus joins enzymes in the glyoxylate shunt and the methylcitrate cycle as targets of itaconate in pathogen propionate metabolism.


Asunto(s)
Coenzima A/metabolismo , Metilmalonil-CoA Mutasa/antagonistas & inhibidores , Metilmalonil-CoA Mutasa/metabolismo , Mycobacterium tuberculosis/enzimología , Succinatos/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Desoxiadenosinas , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Enlace de Hidrógeno , Macrófagos/metabolismo , Metilmalonil-CoA Mutasa/química , Modelos Moleculares , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Propionatos/metabolismo , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Succinatos/farmacología , Vitamina B 12/metabolismo , Vitamina B 12/farmacología
4.
Chem Commun (Camb) ; 54(43): 5442-5445, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29745391

RESUMEN

We report the synthesis and application of a small molecule probe for carbonic anhydrase (CA) to track holo-CA in cell lysates and live-cell models of zinc dyshomeostasis. The probe displays a 12-fold increase in fluorescence upon binding to bovine CA and also responds to human CA isoforms.


Asunto(s)
Anhidrasas Carbónicas/análisis , Eritrocitos/metabolismo , Colorantes Fluorescentes/química , Bibliotecas de Moléculas Pequeñas/química , Zinc/análisis , Animales , Anhidrasas Carbónicas/metabolismo , Bovinos , Eritrocitos/citología , Humanos , Estructura Molecular , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA