Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Calcif Tissue Int ; 114(5): 524-534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38506955

RESUMEN

Pre-proenkephalin 1 (Penk1) is a pro-neuropeptide that belongs to the typical opioid peptide's family, having analgesic properties. We previously found Penk1 to be the most downregulated gene in a whole gene profiling analysis performed in osteoblasts subjected to microgravity as a model of mechanical unloading. In this work, Penk1 downregulation was confirmed in the bones of two in vivo models of mechanical unloading: tail-suspended and botulinum toxin A (botox)-injected mice. Consistently, in the sera from healthy volunteers subjected to bed rest, we observed an inverse correlation between PENK1 and bed rest duration. These results prompted us to investigate a role for this factor in bone. Penk1 was highly expressed in mouse bone, but its global deletion failed to impact bone metabolism in vivo. Indeed, Penk1 knock out (Penk1-/-) mice did not show an overt bone phenotype compared to the WT littermates. Conversely, in vitro Penk1 gene expression progressively increased during osteoblast differentiation and its transient silencing in mature osteoblasts by siRNAs upregulated the transcription of the Sost1 gene encoding sclerostin, and decreased Wnt3a and Col1a1 mRNAs, suggesting an altered osteoblast activity due to an impairment of the Wnt pathway. In line with this, osteoblasts treated with the Penk1 encoded peptide, Met-enkephalin, showed an increase of Osx and Col1a1 mRNAs and enhanced nodule mineralization. Interestingly, primary osteoblasts isolated from Penk1-/- mice showed lower metabolic activity, ALP activity, and nodule mineralization, as well as a lower number of CFU-F compared to osteoblasts isolated from WT mice, suggesting that, unlike the transient inhibition, the chronic Penk1 deletion affects both osteoblast differentiation and activity. Taken together, these results highlight a role for Penk1 in the regulation of the response of the bone to mechanical unloading, potentially acting on osteoblast differentiation and activity in a cell-autonomous manner.


Asunto(s)
Regulación hacia Abajo , Encefalinas , Ratones Noqueados , Osteoblastos , Animales , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Encefalinas/metabolismo , Encefalinas/genética , Ratones , Humanos , Masculino , Diferenciación Celular , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Ratones Endogámicos C57BL , Adulto
2.
Front Oncol ; 12: 983254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544705

RESUMEN

Osteosarcoma is the most common primary bone malignancy. The crosstalk between osteosarcoma and the surrounding tumour microenvironment (TME) drives key events that lead to metastasization, one of the main obstacles for definitive cure of most malignancies. Extracellular vesicles (EVs), lipid bilayer nanoparticles used by cells for intercellular communication, are emerging as critical biological mediators that permit the interplay between neoplasms and the tumour microenvironment, modulating re-wiring of energy metabolism and redox homeostatic processes. We previously showed that EVs derived from the human osteosarcoma cells influence bone cells, including osteoblasts. We here investigated whether the opposite could also be true, studying how osteoblast-derived EVs (OB-EVs) could alter tumour phenotype, mitochondrial energy metabolism, redox status and oxidative damage in MNNG/HOS osteosarcoma cells.These were treated with EVs obtained from mouse primary osteoblasts, and the following endpoints were investigated: i) cell viability and proliferation; ii) apoptosis; iii) migration and invasive capacity; iv) stemness features; v) mitochondrial function and energy metabolism; vi) redox status, antioxidant capacity and oxidative molecular damage. OB-EVs decreased MNNG/HOS metabolic activity and viability, which however was not accompanied by impaired proliferation nor by increased apoptosis, with respect to control. In addition, OB-EV-treated cells exhibited a significant reduction of motility and in vitro invasion as compared to untreated cells. Although the antioxidant N-acetyl-L-cysteine reverted the cytotoxic effect of OB-EVs, no evidence of oxidative stress was observed in treated cells. However, the redox balance of glutathione was significantly shifted towards a pro-oxidant state, even though the major antioxidant enzymatic protection did not respond to the pro-oxidant challenge. We did not find strong evidence of mitochondrial involvement or major energy metabolic switches induced by OB-EVs, but a trend of reduction in seahorse assay basal respiration was observed, suggesting that OB-EVs could represent a mild metabolic challenge for osteosarcoma cells. In summary, our findings suggest that OB-EVs could serve as important means through which TME and osteosarcoma core cross-communicate. For the first time, we proved that OB-EVs reduced osteosarcoma cells' aggressiveness and viability through redox-dependent signalling pathways, even though mitochondrial dynamics and energy metabolism did not appear as processes critically needed to respond to OB-EVs.

3.
Antioxidants (Basel) ; 9(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126625

RESUMEN

To improve the loadability and antioxidant properties of wool impregnated with onion skin extract, the introduction of SB3-14 surfactant in the dyeing process was evaluated. A preliminary investigation on the surfactant-quercetin interaction indicated that the optimal conditions for dye solubility, stability, and surfactant affinity require double-distilled water (pH = 5.5) as a medium and SB3-14 in a concentration above the c.m.c. (2.5 × 10-3 M). The absorption profile of textiles showed the flavonoid absorption band (390 nm) and a bathochromic feature (510 nm), suggesting flavonoid aggregates. The higher absorbance for the sample dyed with SB3-14 indicated greater dye uptake, which was further confirmed by HPLC analysis. The Folin-Ciocalteu method was applied to evaluate the total phenol content (TPC) released from the treated wool, while the assays FRAP, DPPH, ABTS, and ORAC were applied to evaluate the corresponding total antioxidant activity (TAC). Higher TPCs (about 20%) and TACs (5-55%) were measured with SB3-14, highlighting textiles with improved biofunctional properties. Spectrophotometric analyses were also performed with an artificial sweat. The potential cytotoxic effect of SB3-14 in both monomeric and aggregated forms, cell viability, and induction of apoptosis were evaluated in RAW 264.7 cells. These analyses revealed that SB3-14 is safe at concentrations below the c.m.c.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...