Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 214(Pt 3): 114041, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952749

RESUMEN

The contamination of natural water bodies with pharmaceutical compounds has raised significant concerns about ecological and public health safety. In this study, biochars were synthesized from iron-free microalgal biomass (harvested by centrifugation) and iron-containing microalgal biomass (harvested by coagulation) and tested for the adsorption of ciprofloxacin (CIP) and diclofenac (DIC) from water in batch and fixed-bed column continuous studies. The physicochemical properties of synthesized biochars were analyzed using Brunauer, Emmett and Teller (BET) surface area analyzer, elemental analyzer, Fourier Transformed Infrared spectroscopy (FTIR), X-ray Diffractometer (XRD), and Scanning electron microscope with energy dispersive spectroscopy (SEM-EDS). The maximum monolayer adsorption capacities of iron-containing biochar (FBC750W) and iron-free biochar (MBC750W) based on the Langmuir model were obtained as 75.97 mg/g and 39.08 mg/g for CIP, and 40.99 mg/g and 6.77 mg/g for DIC, respectively. Comparatively, maximum monolayer adsorption capacities of commercial activated carbon (C-AC) were found to be 50.97 mg/g and 46.39 mg/g for CIP and DIC, respectively. In fixed-bed column continuous adsorption studies, the effects of flow rate (1 and 2 mL/min) and the adsorbent amount (50 and 100 mg) on adsorption performance were evaluated. Column kinetic models, such as Bohart-Adams model and Fractal-like Bohart-Adams model were examined. The adsorption mechanisms were proposed as pore filling, π-π interaction, and electrostatic interaction. Overall, the results of this study revealed that microalgal biomass, harvested with FeCl3, can be used for the direct synthesis of iron-containing biochar for the removal of pharmaceuticals from water.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Adsorción , Biomasa , Carbón Orgánico/química , Ciprofloxacina/química , Diclofenaco , Cinética , Preparaciones Farmacéuticas , Espectroscopía Infrarroja por Transformada de Fourier , Agua , Contaminantes Químicos del Agua/análisis
2.
ACS Omega ; 7(9): 7572-7584, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284749

RESUMEN

Engineering and synthesis of novel materials are vital for removing emerging pollutants, such as pharmaceuticals from contaminated water. In this study, a magnetic carbon nanofiber (MCF) fabricated from bacterial cellulose was tested for the adsorption of diclofenac from water. The physical and chemical properties of the synthesized adsorbent were examined by field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, energy-dispersive X-ray spectroscopy (EDS), a vibrating sample magnetometer (VSM), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The characterization results showed that the MCF is a carbon nanofiber with a three-dimensional interconnect network, forming a porous material (mesopores and macropores) with a specific surface area of 222.3 m2/g. The removal of diclofenac (10 mg/L) by the MCF (0.75 g/L) was efficient (93.2%) and fast (in 20 min). According to the Langmuir isotherm model fitting, the maximum adsorption capacity of the MCF was 43.56 mg/g. Moreover, continuous adsorption of diclofenac onto MCF was investigated in a fixed-bed column, and the maximum adsorption capacity was found to be 67 mg/g. The finding of this research revealed that the MCF could be a promising adsorbent used to remove diclofenac from water, while it can be easily recovered by magnetic separation.

3.
Sci Rep ; 10(1): 3427, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098983

RESUMEN

Membrane fouling is the major factor limiting the wider applicability of the membrane-based technologies in water treatment and in separation and purification processes of biorefineries, pulp and paper industry, food industry and other sectors. Endeavors to prevent and minimize fouling requires a deep understanding on the fouling mechanisms and their relative effects. In this study, Brunauer-Emmett-Teller (BET) nitrogen adsorption/desorption technique was applied to get an insight into pore-level membrane fouling phenomena occurring in ultrafiltration of wood-based streams. The fouling of commercial polysulfone and polyethersulfone membranes by black liquor, thermomechanical pulping process water and pressurized hot-water extract was investigated with BET analysis, infrared spectroscopy, contact angle analysis and pure water permeability measurements. Particular emphasis was paid to the applicability of BET for membrane fouling characterization. The formation of a fouling layer was detected as an increase in cumulative pore volumes and pore areas in the meso-pores region. Pore blocking was seen as disappearance of meso-pores and micro-pores. The results indicate that the presented approach of using BET analysis combined with IR spectroscopy can provide complementary information revealing both the structure of fouling layer and the chemical nature of foulants.

4.
Waste Manag ; 83: 6-13, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30514472

RESUMEN

Determining the chemical properties of waste is crucial to ensure the most effective utilization of waste. The standard laboratory measurements can produce accurate results, but analysis is labor- and time-consuming. The variety of elements that field portable X-ray fluorescence spectrometry (FPXRF) can detect from selected waste materials was studied, including how the results compared with those of inductively coupled plasma mass spectrometry (ICP-MS) measurements. The selected materials were fine fraction reject from solid recovered fuel production, fly ash, biowaste, and compost. Based on the results, FPXRF is reported to be best suited for waste samples, such as ash and compost, because of their physical properties, as follows: not too moist, quite small particle size, and not too heterogeneous. The results obtained from FPXRF showed the lowest relative standard deviation for ash material. The analysis of the limits of agreement between FPXRF and ICP-MS showed that FPXRF was mainly suitable for qualitative assessment. Furthermore, regression analysis showed a linear correlation between FPXRF and ICP-MS results for calcium and zinc in the selected materials. Keeping the limitations in mind, FPXRF could be used for qualitative analysis in waste treatment processes, such as first quality control of waste materials.


Asunto(s)
Ceniza del Carbón , Zinc , Tamaño de la Partícula , Espectrometría por Rayos X , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA