Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Neuroinflammation ; 21(1): 127, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741181

RESUMEN

HIV-associated neurocognitive disorders (HAND) are a spectrum of cognitive impairments that continue to affect approximately half of all HIV-positive individuals despite effective viral suppression through antiretroviral therapy (ART). White matter pathologies have persisted in the ART era, and the degree of white matter damage correlates with the degree of neurocognitive impairment in patients with HAND. The HIV protein Nef has been implicated in HAND pathogenesis, but its effect on white matter damage has not been well characterized. Here, utilizing in vivo, ex vivo, and in vitro methods, we demonstrate that Nef-containing extracellular vesicles (Nef EVs) disrupt myelin sheaths and inflict damage upon oligodendrocytes within the murine central nervous system. Intracranial injection of Nef EVs leads to reduced myelin basic protein (MBP) staining and a decreased number of CC1 + oligodendrocytes in the corpus callosum. Moreover, cerebellar slice cultures treated with Nef EVs exhibit diminished MBP expression and increased presence of unmyelinated axons. Primary mixed brain cultures and enriched oligodendrocyte precursor cell cultures exposed to Nef EVs display a decreased number of O4 + cells, indicative of oligodendrocyte impairment. These findings underscore the potential contribution of Nef EV-mediated damage to oligodendrocytes and myelin maintenance in the pathogenesis of HAND.


Asunto(s)
Vesículas Extracelulares , VIH-1 , Ratones Endogámicos C57BL , Oligodendroglía , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Animales , Oligodendroglía/metabolismo , Oligodendroglía/patología , Oligodendroglía/virología , Ratones , Vesículas Extracelulares/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Células Cultivadas , Humanos , Masculino
2.
Cell Rep ; 41(8): 111674, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417867

RESUMEN

A possible explanation for chronic inflammation in HIV-infected individuals treated with anti-retroviral therapy is hyperreactivity of myeloid cells due to a phenomenon called "trained immunity." Here, we demonstrate that human monocyte-derived macrophages originating from monocytes initially treated with extracellular vesicles containing HIV-1 protein Nef (exNef), but differentiating in the absence of exNef, release increased levels of pro-inflammatory cytokines after lipopolysaccharide stimulation. This effect is associated with chromatin changes at the genes involved in inflammation and cholesterol metabolism pathways and upregulation of the lipid rafts and is blocked by methyl-ß-cyclodextrin, statin, and an inhibitor of the lipid raft-associated receptor IGF1R. Bone-marrow-derived macrophages from exNef-injected mice, as well as from mice transplanted with bone marrow from exNef-injected animals, produce elevated levels of tumor necrosis factor α (TNF-α) upon stimulation. These phenomena are consistent with exNef-induced trained immunity that may contribute to persistent inflammation and associated co-morbidities in HIV-infected individuals with undetectable HIV load.


Asunto(s)
Vesículas Extracelulares , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Ratones , Animales , VIH-1/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo
3.
Mol Neurobiol ; 59(2): 1088-1097, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34843091

RESUMEN

HIV-associated neurocognitive disorders (HAND) is a term used to describe a variety of neurological impairments observed in HIV-infected individuals. The pathogenic mechanisms of HAND and of its connection to HIV infection remain unknown, but one of the considered hypotheses suggests that HIV infection accelerates the development of Alzheimer's disease. Previous studies suggested that HIV-1 Nef may contribute to HAND by inhibiting cholesterol efflux, increasing the abundance of lipid rafts, and affecting their functionality. Our comparative analysis of postmortem brain samples demonstrated a trend toward the decreased abundance of cholesterol transporter ABCA1 in samples from HIV-infected ART-treated individuals relative to samples from uninfected controls, and a reverse correlation between ABCA1 and flotillin 1, a marker for lipid rafts, in all analyzed samples. The brain samples from HIV-infected individuals, both with and without HAND, were characterized by the increased abundance of p-Tau217 peptide, which correlated with the abundance of flotillin 1. HIV-1 Nef was analyzed in samples from HAND-affected individuals by Western blot with 4 different antibodies and by LC-MS/MS, producing a Nef-positivity score. A significant correlation was found between this score and the abundance of flotillin 1, the abundance of p-Tau217, and the severity of HAND. These results highlight the contribution of Nef and Nef-dependent impairment of cholesterol efflux to HAND pathogenesis and support a connection between the pathogenesis of HAND and Alzheimer's disease.


Asunto(s)
Infecciones por VIH , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Proteínas tau , Encéfalo/metabolismo , Cromatografía Liquida , Infecciones por VIH/complicaciones , Infecciones por VIH/patología , Humanos , Trastornos Neurocognitivos/complicaciones , Espectrometría de Masas en Tándem , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas tau/metabolismo
4.
J Biol Chem ; 295(38): 13377-13392, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32732283

RESUMEN

HIV-associated neurocognitive disorders (HANDs) are a frequent outcome of HIV infection. Effective treatment of HIV infection has reduced the rate of progression and severity but not the overall prevalence of HANDs, suggesting ongoing pathological process even when viral replication is suppressed. In this study, we investigated how HIV-1 protein Nef secreted in extracellular vesicles (exNef) impairs neuronal functionality. ExNef were rapidly taken up by neural cells in vitro, reducing the abundance of ABC transporter A1 (ABCA1) and thus cholesterol efflux and increasing the abundance and modifying lipid rafts in neuronal plasma membranes. ExNef caused a redistribution of amyloid precursor protein (APP) and Tau to lipid rafts and increased the abundance of these proteins, as well as of Aß42 ExNef further potentiated phosphorylation of Tau and activation of inflammatory pathways. These changes were accompanied by neuronal functional impairment. Disruption of lipid rafts with cyclodextrin reversed the phenotype. Short-term treatment of C57BL/6 mice with either purified recombinant Nef or exNef similarly resulted in reduced abundance of ABCA1 and elevated abundance of APP in brain tissue. The abundance of ABCA1 in brain tissue of HIV-infected human subjects diagnosed with HAND was lower, and the abundance of lipid rafts was higher compared with HIV-negative individuals. Levels of APP and Tau in brain tissue correlated with the abundance of Nef. Thus, modification of neuronal cholesterol trafficking and of lipid rafts by Nef may contribute to early stages of neurodegeneration and pathogenesis in HAND.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Microdominios de Membrana/metabolismo , Trastornos Neurocognitivos/metabolismo , Neuronas/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas tau/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Colesterol/genética , Colesterol/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Infecciones por VIH/patología , VIH-1/genética , Humanos , Microdominios de Membrana/genética , Ratones , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/patología , Neuronas/patología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Proteínas tau/genética
6.
mBio ; 11(1)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964734

RESUMEN

Apolipoprotein A-I binding protein (AIBP) is a protein involved in regulation of lipid rafts and cholesterol efflux. AIBP has been suggested to function as a protective factor under several sets of pathological conditions associated with increased abundance of lipid rafts, such as atherosclerosis and acute lung injury. Here, we show that exogenously added AIBP reduced the abundance of lipid rafts and inhibited HIV replication in vitro as well as in HIV-infected humanized mice, whereas knockdown of endogenous AIBP increased HIV replication. Endogenous AIBP was much more abundant in activated T cells than in monocyte-derived macrophages (MDMs), and exogenous AIBP was much less effective in T cells than in MDMs. AIBP inhibited virus-cell fusion, specifically targeting cells with lipid rafts mobilized by cell activation or Nef-containing exosomes. MDM-HIV fusion was sensitive to AIBP only in the presence of Nef provided by the virus or exosomes. Peripheral blood mononuclear cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, bound less AIBP than cells from donors with other HLA genotypes and were not protected by AIBP from rapid HIV-1 replication. These results provide the first evidence for the role of Nef exosomes in regulating HIV-cell fusion by modifying lipid rafts and suggest that AIBP is an innate factor that restricts HIV replication by targeting lipid rafts.IMPORTANCE Apolipoprotein A-I binding protein (AIBP) is a recently identified innate anti-inflammatory factor. Here, we show that AIBP inhibited HIV replication by targeting lipid rafts and reducing virus-cell fusion. Importantly, AIBP selectively reduced levels of rafts on cells stimulated by an inflammatory stimulus or treated with extracellular vesicles containing HIV-1 protein Nef without affecting rafts on nonactivated cells. Accordingly, fusion of monocyte-derived macrophages with HIV was sensitive to AIBP only in the presence of Nef. Silencing of endogenous AIBP significantly upregulated HIV-1 replication. Interestingly, HIV-1 replication in cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, was not inhibited by AIBP. These results suggest that AIBP is an innate anti-HIV factor that targets virus-cell fusion.

7.
PLoS Pathog ; 15(7): e1007907, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31344124

RESUMEN

HIV infection has a profound effect on "bystander" cells causing metabolic co-morbidities. This may be mediated by exosomes secreted by HIV-infected cells and containing viral factors. Here we show that exosomes containing HIV-1 protein Nef (exNef) are rapidly taken up by macrophages releasing Nef into the cell interior. This caused down-regulation of ABCA1, reduction of cholesterol efflux and sharp elevation of the abundance of lipid rafts through reduced activation of small GTPase Cdc42 and decreased actin polymerization. Changes in rafts led to re-localization of TLR4 and TREM-1 to rafts, phosphorylation of ERK1/2, activation of NLRP3 inflammasome, and increased secretion of pro-inflammatory cytokines. The effects of exNef on lipid rafts and on inflammation were reversed by overexpression of a constitutively active mutant of Cdc42. Similar effects were observed in macrophages treated with exosomes produced by HIV-infected cells or isolated from plasma of HIV-infected subjects, but not with exosomes from cells and subjects infected with ΔNef-HIV or uninfected subjects. Mice injected with exNef exhibited monocytosis, reduced ABCA1 in macrophages, increased raft abundance in monocytes and augmented inflammation. Thus, Nef-containing exosomes potentiated pro-inflammatory response by inducing changes in cholesterol metabolism and reorganizing lipid rafts. These mechanisms may contribute to HIV-associated metabolic co-morbidities.


Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Efecto Espectador , Colesterol/metabolismo , Exosomas/metabolismo , Exosomas/virología , Células HEK293 , VIH-1 , Humanos , Inflamación/metabolismo , Inflamación/virología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/virología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
8.
PLoS One ; 14(4): e0215620, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30998801

RESUMEN

HIV infection is known to be associated with cardiometabolic abnormalities; here we investigated the progression and causes of these abnormalities. Three groups of participants were recruited: HIV-negative subjects and two groups of treatment-naïve HIV-positive subjects, one group initiating antiretroviral treatment, the other remaining untreated. Intima-media thickness (cIMT) increased in HIV-positive untreated group compared to HIV-negative group, but treatment mitigated the difference. We found no increase in diabetes-related metabolic markers or in the level of inflammation in any of the groups. Total cholesterol, low density lipoprotein cholesterol and apoB levels were lower in HIV-positive groups, while triglyceride and Lp(a) levels did not differ between the groups. We found a statistically significant negative association between viral load and plasma levels of total cholesterol, LDL cholesterol, HDL cholesterol, apoA-I and apoB. HIV-positive patients had hypoalphalipoproteinemia at baseline, and we found a redistribution of sub-populations of high density lipoprotein (HDL) particles with increased proportion of smaller HDL in HIV-positive untreated patients, which may result from increased levels of plasma cholesteryl ester transfer protein in this group. HDL functionality declined in the HIV-negative and HIV-positive untreated groups, but not in HIV-positive treated group. We also found differences between HIV-positive and negative groups in plasma abundance of several microRNAs involved in lipid metabolism. Our data support a hypothesis that cardiometabolic abnormalities in HIV infection are caused by HIV and that antiretroviral treatment itself does not influence key cardiometabolic parameters, but mitigates those affected by HIV.


Asunto(s)
Antirretrovirales/administración & dosificación , Aterosclerosis/sangre , Infecciones por VIH/sangre , VIH-1 , Hipoalfalipoproteinemias/sangre , Lípidos/sangre , Adulto , Aterosclerosis/prevención & control , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Hipoalfalipoproteinemias/prevención & control , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Estudios Prospectivos
9.
Exp Mol Pathol ; 105(2): 202-207, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30118702

RESUMEN

High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (p = 0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, p < 0.001). Importantly, the suppression of cholesterol efflux was independent of known effects of these genes on cellular cholesterol content, as cells were loaded with cholesterol using acetylated LDL. These results indicate that HDL particles stimulate expression of genes that enhance cellular cholesterol transfer to HDL.


Asunto(s)
HDL-Colesterol/genética , Macrófagos/fisiología , Transportador 1 de Casete de Unión a ATP/genética , Aterosclerosis/fisiopatología , Transporte Biológico , Colesterol , HDL-Colesterol/metabolismo , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Células Espumosas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Mensajero , ARN Interferente Pequeño , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células THP-1 , Regulación hacia Arriba
10.
AIDS ; 32(15): 2103-2111, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30005006

RESUMEN

BACKGROUND: HIV-associated atherosclerosis is a major comorbidity due, in part, to systemic effects of the virus on cholesterol metabolism. HIV protein Nef plays an important role in this pathology by impairing maturation of the main cellular cholesterol transporter ATP-Binding Cassette (ABCA) 1. ABCA1 maturation critically depends on calnexin, an integral endoplasmic reticulum membrane chaperone, and Nef binds to the cytoplasmic domain of calnexin and impairs interaction of calnexin with ABCA1. Overarching goal of the present study was to model Nef-calnexin interaction interface, and identify small molecule compounds potentially inhibiting this interaction. METHODS: Molecular dynamics was utilized to build structure model of calnexin cytoplasmic domain, followed by global docking combined with application of QASDOM software developed by us for efficient analysis of receptor-ligand complexes. Structure-based virtual screening was performed for all sites identified by docking. A soluble analogue of a compound from the screening results list was tested for ability to down-regulate ABCA1. RESULTS: We identified major interaction sites in calnexin and reciprocal sites in Nef. Virtual screening yielded a number of small-molecule compounds potentially blocking a calnexin site. Interestingly, one of the compounds, NSC13987, was previously identified by us as an inhibitor targeting a Nef site. An analogue of NSC13987, AMS-55, potently reversed the negative effect of Nef on ABCA1 abundance. CONCLUSIONS: We have modelled Nef-calnexin interaction, predicted small molecule compounds that can potentially inhibit this interaction, and experimentally tested one of these compounds, confirming its effectiveness. These findings provide a platform for searching for new therapeutic agents to treat HIV-associated comorbidities.


Asunto(s)
Calnexina/metabolismo , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Transportador 1 de Casete de Unión a ATP/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores
11.
AIDS ; 31(18): 2483-2492, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29120899

RESUMEN

OBJECTIVE: To assess variation in genes that regulate cholesterol metabolism in relation to the natural history of HIV infection. DESIGN: Cross-sectional and longitudinal analysis of the Women's Interagency HIV Study. METHODS: We examined 2050 single nucleotide polymorphisms (SNPs) in 19 genes known to regulate cholesterol metabolism in relation to HIV viral load and CD4 T-cell levels in a multiracial cohort of 1066 antiretroviral therapy-naive women. RESULTS: Six SNPs were associated with both HIV viral load and CD4 T-cell levels at a false discovery rate of 0.01. Bioinformatics tools did not predict functional activity for five SNPs, located in introns of nuclear receptor corepressor 2, retinoid X receptor alpha (RXRA), and tetratricopeptide repeat domain 39B. Rs17111557 located in the 3' untranslated region of proprotein convertase subtilisin/kexin type 9 (PCSK9) putatively affects binding of hsa-miR-548t-5p and hsa-miR-4796-3p, which could regulate PCSK9 expression levels. Interrogation of rs17111557 revealed stronger associations in the subset of women with HIV/hepatitis C virus (HCV) coinfection (n = 408, 38% of women). Rs17111557 was also associated with low-density lipoprotein cholesterol levels in HIV/HCV coinfected (ß: -10.4; 95% confidence interval: -17.9, -2.9; P = 0.007), but not in HIV monoinfected (ß:1.2; 95% confidence interval: -6.3, 8.6; P = 0.76) women in adjusted analysis. CONCLUSION: PCSK9 polymorphism may affect HIV pathogenesis, particularly in HIV/HCV coinfected women. A likely mechanism for this effect is PCSK9-mediated regulation of cholesterol metabolism. Replication in independent cohorts is needed to clarify the generalizability of the observed associations.


Asunto(s)
Regiones no Traducidas 3' , Coinfección/genética , Infecciones por VIH/genética , Hepatitis C Crónica/genética , Polimorfismo de Nucleótido Simple , Proproteína Convertasa 9/genética , Carga Viral , Adulto , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Coinfección/patología , Estudios Transversales , Femenino , Infecciones por VIH/patología , Hepatitis C Crónica/patología , Humanos , Estudios Longitudinales
12.
AIDS Res Hum Retroviruses ; 33(1): 57-60, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27649790

RESUMEN

HIV-infected individuals are at high risk of developing atherosclerosis and cardiovascular disease, in part, due to HIV-induced impairment of cholesterol metabolism. In vitro studies demonstrated that HIV-1 protein Nef inhibits activity of ABCA1, the main cellular cholesterol transporter, leading to cholesterol accumulation in macrophages and conversion of these cells into foam cells, characteristic for atherosclerosis. However, the mechanisms of Nef-mediated effects on cholesterol metabolism in vivo are not well characterized. In this study, we generated Nef-transgenic mice and evaluated the accumulation of neutral lipids in liver and aorta of these animals. Nef expression was low in all transgenic mice, with some mice carrying the Nef transgene, but not expressing the Nef RNA. Using Oil Red O staining, we demonstrated increased levels of neutral lipids in liver and aorta of mice expressing Nef relative to transgenic animals, with no detectable Nef expression or control wild-type mice. These results provide direct evidence that Nef promotes cholesterol deposition in tissues.


Asunto(s)
Aorta/patología , Lípidos/análisis , Hígado/patología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/biosíntesis , Animales , Histocitoquímica , Ratones Endogámicos C57BL , Ratones Transgénicos , Coloración y Etiquetado , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
13.
PLoS Pathog ; 12(10): e1005931, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27764257

RESUMEN

Schistosomiasis is the most important helminthic disease of humanity in terms of morbidity and mortality. Facile manipulation of schistosomes using lentiviruses would enable advances in functional genomics in these and related neglected tropical diseases pathogens including tapeworms, and including their non-dividing cells. Such approaches have hitherto been unavailable. Blood stream forms of the human blood fluke, Schistosoma mansoni, the causative agent of the hepatointestinal schistosomiasis, were infected with the human HIV-1 isolate NL4-3 pseudotyped with vesicular stomatitis virus glycoprotein. The appearance of strong stop and positive strand cDNAs indicated that virions fused to schistosome cells, the nucleocapsid internalized and the RNA genome reverse transcribed. Anchored PCR analysis, sequencing HIV-1-specific anchored Illumina libraries and Whole Genome Sequencing (WGS) of schistosomes confirmed chromosomal integration; >8,000 integrations were mapped, distributed throughout the eight pairs of chromosomes including the sex chromosomes. The rate of integrations in the genome exceeded five per 1,000 kb and HIV-1 integrated into protein-encoding loci and elsewhere with integration bias dissimilar to that of human T cells. We estimated ~ 2,100 integrations per schistosomulum based on WGS, i.e. about two or three events per cell, comparable to integration rates in human cells. Accomplishment in schistosomes of post-entry processes essential for HIV-1replication, including integrase-catalyzed integration, was remarkable given the phylogenetic distance between schistosomes and primates, the natural hosts of the genus Lentivirus. These enigmatic findings revealed that HIV-1 was active within cells of S. mansoni, and provided the first demonstration that HIV-1 can integrate into the genome of an invertebrate.


Asunto(s)
Genoma de los Helmintos , Infecciones por VIH , VIH-1 , Schistosoma mansoni/virología , Esquistosomiasis mansoni/virología , Integración Viral , Animales , Animales Modificados Genéticamente , Ratones , Reacción en Cadena de la Polimerasa , Transducción Genética
14.
Virology ; 497: 11-22, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27414250

RESUMEN

The post-entry events of HIV-1 infection occur within reverse transcription complexes derived from the viral cores entering the target cell. HIV-1 cores contain host proteins incorporated from virus-producing cells. In this report, we show that MCM5, a subunit of the hexameric minichromosome maintenance (MCM) DNA helicase complex, associates with Gag polyprotein and is incorporated into HIV-1 virions. The progeny virions depleted of MCM5 demonstrated reduced reverse transcription in newly infected cells, but integration and subsequent replication steps were not affected. Interestingly, increased packaging of MCM5 into the virions also led to reduced reverse transcription, but here viral replication was impaired. Our data suggest that incorporation of physiological amounts of MCM5 promotes aberrant reverse transcription, leading to partial incapacitation of cDNA, whereas increased MCM5 abundance leads to reduced reverse transcription and infection. Therefore, MCM5 has the properties of an inhibitory factor that interferes with production of an integration-competent cDNA product.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , VIH-1/fisiología , Virión , Replicación Viral , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular , Células Cultivadas , Infecciones por VIH/virología , Humanos , Macrófagos/metabolismo , Macrófagos/virología , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 36(9): 1758-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27470515

RESUMEN

OBJECTIVE: HIV-infected patients are at an increased risk of developing atherosclerosis, in part because of downmodulation and functional impairment of ATP-binding cassette A1 (ABCA1) cholesterol transporter by the HIV-1 protein Nef. The mechanism of this effect involves Nef interacting with an ER chaperone calnexin and disrupting calnexin binding to ABCA1, leading to ABCA1 retention in ER, its degradation and resulting suppression of cholesterol efflux. However, molecular details of Nef-calnexin interaction remained unknown, limiting the translational impact of this finding. APPROACH AND RESULTS: Here, we used molecular modeling and mutagenesis to characterize Nef-calnexin interaction and to identify small molecule compounds that could block it. We demonstrated that the interaction between Nef and calnexin is direct and can be reconstituted using recombinant proteins in vitro with a binding affinity of 89.1 nmol/L measured by surface plasmon resonance. The cytoplasmic tail of calnexin is essential and sufficient for interaction with Nef, and binds Nef with an affinity of 9.4 nmol/L. Replacing lysine residues in positions 4 and 7 of Nef with alanines abrogates Nef-calnexin interaction, prevents ABCA1 downregulation by Nef, and preserves cholesterol efflux from HIV-infected cells. Through virtual screening of the National Cancer Institute library of compounds, we identified a compound, 1[(7-oxo-7H-benz[de]anthracene-3-yl)amino]anthraquinone, which blocked Nef-calnexin interaction, partially restored ABCA1 activity in HIV-infected cells, and reduced foam cell formation in a culture of HIV-infected macrophages. CONCLUSION: This study identifies potential targets that can be exploited to block the pathogenic effect of HIV infection on cholesterol metabolism and prevent atherosclerosis in HIV-infected subjects.


Asunto(s)
Antraquinonas/farmacología , Aterosclerosis/prevención & control , Calnexina/metabolismo , Colesterol/metabolismo , Diseño de Fármacos , Infecciones por VIH/tratamiento farmacológico , Hipolipemiantes/farmacología , Simulación del Acoplamiento Molecular , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Antraquinonas/química , Aterosclerosis/metabolismo , Aterosclerosis/virología , Transporte Biológico , Calnexina/química , Calnexina/genética , Diseño Asistido por Computadora , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Hipolipemiantes/química , Lisina , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Transfección , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
16.
J Pharmacol Exp Ther ; 354(3): 376-83, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26126533

RESUMEN

Previous studies demonstrated that liver X receptor (LXR) agonists inhibit human immunodeficiency virus (HIV) replication by upregulating cholesterol transporter ATP-binding cassette A1 (ABCA1), suppressing HIV production, and reducing infectivity of produced virions. In this study, we extended these observations by analyzing the effect of the LXR agonist T0901317 [N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide] on the ongoing HIV infection and investigating the possibility of using LXR agonist for pre-exposure prophylaxis of HIV infection in a humanized mouse model. Pre-exposure of monocyte-derived macrophages to T0901317 reduced susceptibility of these cells to HIV infection in vitro. This protective effect lasted for up to 4 days after treatment termination and correlated with upregulated expression of ABCA1, reduced abundance of lipid rafts, and reduced fusion of the cells with HIV. Pre-exposure of peripheral blood leukocytes to T0901317 provided only a short-term protection against HIV infection. Treatment of HIV-exposed humanized mice with LXR agonist starting 2 weeks postinfection substantially reduced viral load. When eight humanized mice were pretreated with LXR agonist prior to HIV infection, five animals were protected from infection, two had viral load at the limit of detection, and one had viral load significantly reduced relative to mock-treated controls. T0901317 pretreatment also reduced HIV-induced dyslipidemia in infected mice. In conclusion, these results reveal a novel link between LXR stimulation and cell resistance to HIV infection and suggest that LXR agonists may be good candidates for development as anti-HIV agents, in particular for pre-exposure prophylaxis of HIV infection.


Asunto(s)
Fármacos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH/efectos de los fármacos , Hidrocarburos Fluorados/farmacología , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/metabolismo , Sulfonamidas/farmacología , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/virología , Receptores X del Hígado , Macrófagos/efectos de los fármacos , Macrófagos/virología , Ratones , Ratones Endogámicos NOD , Regulación hacia Arriba/efectos de los fármacos , Carga Viral/métodos
17.
Mol Med ; 21(1): 657-664, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26225831

RESUMEN

Biliary atresia (BA) is a devastating liver disease of unknown etiology affecting children generally within the first 3 months of life. The disease is manifested by inflammation and subsequent obstruction of the extrahepatic bile ducts, fibrosis and liver failure. The mechanisms responsible for disease pathogenesis are not fully understood, but a number of factors controlled by the SMAD signaling pathway have been implicated. In this study, we investigated the role of a known proinflammatory factor, extracellular cyclophilin A (CypA), in the pathogenesis of biliary atresia using the rhesus rotavirus (RRV) murine model. We used a unique cyclosporine A derivative, MM284, which does not enter cells and therefore inactivates exclusively extracellular cyclophilins, as a potential treatment. We demonstrated that levels of CypA in plasma of RRV-infected mice were increased significantly, and that treatment of mice with MM284 prior to or one day after disease initiation by RRV infection significantly improved the status of mice with experimental BA: weight gain was restored, bilirubinuria was abrogated, liver infiltration by inflammatory cells was reduced and activation of the SMAD pathway and SMAD-controlled fibrosis mediators and tissue inhibitor of metalloproteinases (TIMP)-4 and matrix metalloproteinase (MMP)-7 was alleviated. Furthermore, treatment of human hepatic stellate cells with recombinant cyclophilin recapitulated SMAD2/3 activation, which was also suppressed by MM284 treatment. Our data provide the first evidence that extracellular cyclophilins activate the SMAD pathway and promote inflammation in experimental BA, and suggest that MM284 may be a promising therapeutic agent for treating BA and possibly other intrahepatic chronic disorders.

18.
J Biol Chem ; 289(42): 28870-84, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25170080

RESUMEN

HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Calnexina/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas gp160 de Envoltorio del VIH/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Glicosilación , Células HEK293 , VIH-1/metabolismo , Células HeLa , Humanos , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
19.
Biochem Biophys Res Commun ; 444(1): 19-23, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24406162

RESUMEN

HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the (2226)DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using co-immunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The (2226)DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/química , Transportador 1 de Casete de Unión a ATP/metabolismo , VIH-1/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Secuencia de Aminoácidos , Epítopos/química , Epítopos/genética , Células HEK293 , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
20.
Biochem Biophys Res Commun ; 419(1): 95-8, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22326260

RESUMEN

HIV-infected subjects are at high risk of developing atherosclerosis, in part due to virus-induced impairment of HDL metabolism. Here, using as a model of HIV infection the NOD.Cg-Prkdc(scid)IL2rg(tm1Wjl)/SzJ (NSG) mice humanized by human stem cell transplantation, we demonstrate that LXR agonist TO901317 potently reduces viral replication and prevents HIV-induced reduction of plasma HDL. These results establish that humanized mice can be used to investigate the mechanisms of HIV-induced impairment of HDL formation, a major feature of dyslipidemia associated with HIV-1 infection, and show potential benefits of developing LXR agonists for treatment of HIV-associated cardio-vascular disease.


Asunto(s)
Anticolesterolemiantes/farmacología , Infecciones por VIH/sangre , VIH-1/efectos de los fármacos , Hidrocarburos Fluorados/farmacología , Lipoproteínas HDL/sangre , Receptores Nucleares Huérfanos/agonistas , Sulfonamidas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Receptores X del Hígado , Ratones , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...