Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38979384

RESUMEN

The bidirectional long-distance transport of organelles is crucial for cell body-synapse communication. However, the mechanisms by which this transport is modulated for synapse formation, maintenance, and plasticity are not fully understood. Here, we demonstrate through quantitative analyses that maintaining sensory neuron-motor neuron synapses in the Aplysia gill-siphon withdrawal reflex is linked to a sustained reduction in the retrograde transport of lysosomal vesicles in sensory neurons. Interestingly, while mitochondrial transport in the anterograde direction increases within 12 hours of synapse formation, the reduction in lysosomal vesicle retrograde transport appears three days after synapse formation. Moreover, we find that formation of new synapses during learning induced by neuromodulatory neurotransmitter serotonin further reduces lysosomal vesicle transport within 24 hours, whereas mitochondrial transport increases in the anterograde direction within one hour of exposure. Pharmacological inhibition of several signaling pathways pinpoints PKA as a key regulator of retrograde transport of lysosomal vesicles during synapse maintenance. These results demonstrate that synapse formation leads to organelle-specific and direction specific enduring changes in long-distance transport, offering insights into the mechanisms underlying synapse maintenance and plasticity.

2.
Aging Cell ; : e14228, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924663

RESUMEN

The molecular mechanisms underlying age-related declines in learning and long-term memory are still not fully understood. To address this gap, our study focused on investigating the transcriptional landscape of a singularly identified motor neuron L7 in Aplysia, which is pivotal in a specific type of nonassociative learning known as sensitization of the siphon-withdraw reflex. Employing total RNAseq analysis on a single isolated L7 motor neuron after short-term or long-term sensitization (LTS) training of Aplysia at 8, 10, and 12 months (representing mature, late mature, and senescent stages), we uncovered aberrant changes in transcriptional plasticity during the aging process. Our findings specifically highlight changes in the expression of messenger RNAs (mRNAs) that encode transcription factors, translation regulators, RNA methylation participants, and contributors to cytoskeletal rearrangements during learning and long noncoding RNAs (lncRNAs). Furthermore, our comparative gene expression analysis identified distinct transcriptional alterations in two other neurons, namely the motor neuron L11 and the giant cholinergic neuron R2, whose roles in LTS are not yet fully elucidated. Taken together, our analyses underscore cell type-specific impairments in the expression of key components related to learning and memory within the transcriptome as organisms age, shedding light on the complex molecular mechanisms driving cognitive decline during aging.

3.
Sci Rep ; 14(1): 9622, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671060

RESUMEN

The vacuolar sorting receptors (VSRs) are specific to plants and are responsible for sorting and transporting particular proteins from the trans-Golgi network to the vacuole. This process is critically important for various cellular functions, including storing nutrients during seed development. Despite many years of intense studies on VSRs, a complete relation between function and structure has not yet been revealed. Here, we present the crystal structure of the entire luminal region of glycosylated VSR1 from Arabidopsis thaliana (AtVSR1) for the first time. The structure provides insights into the tertiary and quaternary structures of VSR1, which are composed of an N-terminal protease-associated (PA) domain, a unique central region, and one epidermal growth factor (EGF)-like domain followed by two disordered EGF-like domains. The structure of VSR1 exhibits unique characteristics, the significance of which is yet to be fully understood.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Vacuolas/metabolismo , Dominios Proteicos , Modelos Moleculares , Cristalografía por Rayos X , Transporte de Proteínas
4.
Nat Commun ; 15(1): 2694, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538603

RESUMEN

Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.


Asunto(s)
ARN Largo no Codificante , Ratones , Masculino , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/metabolismo , Hipocampo/fisiología , Recuerdo Mental/fisiología , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL
5.
Res Sq ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993323

RESUMEN

LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.

6.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549915

RESUMEN

Long-term memory formation requires anterograde transport of proteins from the soma of a neuron to its distal synaptic terminals. This allows new synaptic connections to be grown and existing ones remodeled. However, we do not yet know which proteins are transported to synapses in response to activity and temporal regulation. Here, using quantitative mass spectrometry, we have profiled anterograde protein cargos of a learning-regulated molecular motor protein kinesin [Aplysia kinesin heavy chain 1 (ApKHC1)] following short-term sensitization (STS) and long-term sensitization (LTS) in Aplysia californica Our results reveal enrichment of specific proteins associated with ApKHC1 following both STS and LTS, as well as temporal changes within 1 and 3 h of LTS training. A significant number of proteins enriched in the ApKHC1 complex participate in synaptic function, and, while some are ubiquitously enriched across training conditions, a few are enriched in response to specific training. For instance, factors aiding new synapse formation, such as synaptotagmin-1, dynamin-1, and calmodulin, are differentially enriched in anterograde complexes 1 h after LTS but are depleted 3 h after LTS. Proteins including gelsolin-like protein 2 and sec23A/sec24A, which function in actin filament stabilization and vesicle transport, respectively, are enriched in cargos 3 h after LTS. These results establish that the composition of anterograde transport complexes undergo experience-dependent specific changes and illuminate dynamic changes in the communication between soma and synapse during learning.


Asunto(s)
Aplysia , Cinesinas , Animales , Cinesinas/metabolismo , Aprendizaje/fisiología , Neuronas , Sinapsis/fisiología
7.
Mol Cell Neurosci ; 123: 103786, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252719

RESUMEN

Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.


Asunto(s)
Transporte Axonal , Sinapsis , Transporte Axonal/fisiología , Sinapsis/metabolismo , Neuronas/metabolismo , Transducción de Señal , Axones/metabolismo
8.
Methods Mol Biol ; 2431: 23-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412270

RESUMEN

Axonal transport moves proteins, RNAs, and organelles between the soma and synapses to support synaptic function and activity-dependent changes in synaptic strength. This transport is impaired in several neurodegenerative disorders such as Alzheimer's disease. Thus, it is critical to understand the regulation and underlying mechanisms of the transport process. Aplysia californica provides a powerful experimental system for studying the interplay between synaptic activity and transport because its defined synaptic circuits can be built in-vitro. Advantages include precise pre- and postsynaptic manipulation, and high-resolution imaging of axonal transport. Here, we describe methodologies for the quantitative analysis of axonal transport in Aplysia sensory neurons.


Asunto(s)
Aplysia , Sinapsis , Animales , Aplysia/fisiología , Transporte Axonal/fisiología , Orgánulos/metabolismo , Células Receptoras Sensoriales , Sinapsis/metabolismo
9.
Mol Brain ; 14(1): 162, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749771

RESUMEN

Molecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.


Asunto(s)
Extinción Psicológica , Memoria , Corteza Cerebral , Extinción Psicológica/fisiología , Miedo/fisiología , Memoria/fisiología , Corteza Prefrontal/metabolismo
10.
Cell Rep ; 36(2): 109369, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260917

RESUMEN

Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.


Asunto(s)
Cinesinas/metabolismo , Memoria a Largo Plazo , Proteínas Motoras Moleculares/metabolismo , Plasticidad Neuronal , Biosíntesis de Proteínas , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores , Miedo , Femenino , Mutación con Ganancia de Función , Células HEK293 , Hipocampo/metabolismo , Humanos , Aprendizaje , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Transporte de ARN , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica
12.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33863727

RESUMEN

Activity-dependent structural plasticity at the synapse requires specific changes in the neuronal transcriptome. While much is known about the role of coding elements in this process, the role of the long noncoding transcriptome remains elusive. Here, we report the discovery of an intronic long noncoding RNA (lncRNA)-termed ADEPTR-that is up-regulated and synaptically transported in a cAMP/PKA-dependent manner in hippocampal neurons, independently of its protein-coding host gene. Loss of ADEPTR function suppresses activity-dependent changes in synaptic transmission and structural plasticity of dendritic spines. Mechanistically, dendritic localization of ADEPTR is mediated by molecular motor protein Kif2A. ADEPTR physically binds to actin-scaffolding regulators ankyrin (AnkB) and spectrin (Sptn1) via a conserved sequence and is required for their dendritic localization. Together, this study demonstrates how activity-dependent synaptic targeting of an lncRNA mediates structural plasticity at the synapse.

13.
Cells ; 10(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445569

RESUMEN

Neurons, regarded as post-mitotic cells, are characterized by their extensive dendritic and axonal arborization. This unique architecture imposes challenges to how to supply materials required at distal neuronal components. Kinesins are molecular motor proteins that mediate the active delivery of cellular materials along the microtubule cytoskeleton for facilitating the local biochemical and structural changes at the synapse. Recent studies have made intriguing observations that some kinesins that function during neuronal mitosis also have a critical role in post-mitotic neurons. However, we know very little about the function and regulation of such kinesins. Here, we summarize the known cellular and biochemical functions of mitotic kinesins in post-mitotic neurons.


Asunto(s)
Cinesinas/metabolismo , Mitosis , Neuronas/citología , Neuronas/metabolismo , Animales , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Plasticidad Neuronal/fisiología
14.
Front Cell Neurosci ; 14: 521199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192305

RESUMEN

Neurons require a well-coordinated intercellular transport system to maintain their normal cellular function and morphology. The kinesin family of proteins (KIFs) fills this role by regulating the transport of a diverse array of cargos in post-mitotic cells. On the other hand, in mitotic cells, KIFs facilitate the fidelity of the cellular division machinery. Though certain mitotic KIFs function in post-mitotic neurons, little is known about them. We studied the role of a mitotic KIF (KIF3B) in neuronal architecture. We find that the RNAi mediated knockdown of KIF3B in primary cortical neurons resulted in an increase in spine density; the number of thin and mushroom spines; and dendritic branching. Consistent with the change in spine density, we observed a specific increase in the distribution of the excitatory post-synaptic protein, PSD-95 in KIF3B knockdown neurons. Interestingly, overexpression of KIF3B produced a reduction in spine density, in particular mushroom spines, and a decrease in dendritic branching. These studies suggest that KIF3B is a key determinant of cortical neuron morphology and that it functions as an inhibitory constraint on structural plasticity, further illuminating the significance of mitotic KIFs in post-mitotic neurons.

15.
Sci Adv ; 6(2): eaaw8702, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31934620

RESUMEN

Impaired mitochondrial dynamics and function are hallmarks of many neurological and psychiatric disorders, but direct screens for mitotherapeutics using neurons have not been reported. We developed a multiplexed and high-content screening assay using primary neurons and identified 67 small-molecule modulators of neuronal mitostasis (MnMs). Most MnMs that increased mitochondrial content, length, and/or health also increased mitochondrial function without altering neurite outgrowth. A subset of MnMs protected mitochondria in primary neurons from Aß(1-42) toxicity, glutamate toxicity, and increased oxidative stress. Some MnMs were shown to directly target mitochondria. The top MnM also increased the synaptic activity of hippocampal neurons and proved to be potent in vivo, increasing the respiration rate of brain mitochondria after administering the compound to mice. Our results offer a platform that directly queries mitostasis processes in neurons, a collection of small-molecule modulators of mitochondrial dynamics and function, and candidate molecules for mitotherapeutics.


Asunto(s)
Sistema Nervioso Central/citología , Ensayos Analíticos de Alto Rendimiento , Mitocondrias/metabolismo , Neuronas/citología , Adenosina Trifosfato/biosíntesis , Animales , Células Cultivadas , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Dinámicas Mitocondriales/efectos de los fármacos , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Propiofenonas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
16.
Neurobiol Learn Mem ; 163: 107034, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31176693

RESUMEN

While protein-coding genes have been widely studied in learning and memory, the role of the non-coding genome has only recently been investigated. With advances in high throughput sequencing technologies and functional profiling methods, multiple long noncoding RNAs (lncRNAs) have been functionally and mechanistically linked with neurobiological processes related with learning and memory, as well disorders that lead to memory impairment. However, these macromolecules are still a subject of controversy and intense scrutiny regarding the proper criteria for determining their functionality and their evolution in the central nervous system. Recent studies have implicated multiple lncRNAs as critical regulators of gene expression in the central nervous system and mediate learning processes. In this review, we explore possible explanations for how lncRNAs are evolved in our central nervous system, discuss our current understanding of their involvement in learning and memory related disorders, and describe emerging tools for studying lncRNAs.


Asunto(s)
Discapacidades para el Aprendizaje/metabolismo , Aprendizaje , Trastornos de la Memoria/metabolismo , Memoria , ARN Largo no Codificante/fisiología , Animales , Trastornos del Conocimiento/metabolismo , Humanos , ARN Largo no Codificante/metabolismo
17.
Cell Rep ; 26(3): 507-517.e3, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650345

RESUMEN

Mechanisms that regulate the bi-directional transport of mitochondria in neurons for maintaining functional synaptic connections are poorly understood. Here, we show that in the pre-synaptic sensory neurons of the Aplysia gill withdrawal reflex, the formation of functional synapses leads to persistent enhancement in the flux of bi-directional mitochondrial transport. In the absence of a functional synapse, activation of cAMP signaling is sufficient to enhance bi-directional transport in sensory neurons. Furthermore, persistent enhancement in transport does not depend on NMDA and AMPA receptor signaling nor signaling from the post-synaptic neuronal cell body, but it is dependent on transcription and protein synthesis in the pre-synaptic neuron. We identified ∼4,000 differentially enriched transcripts in pre-synaptic neurons, suggesting a long-term change in the transcriptional program produced by synapse formation. These results provide insights into the regulation of bi-directional mitochondrial transport for synapse maintenance.


Asunto(s)
Transporte Axonal/fisiología , Mitocondrias/metabolismo , Sinapsis/metabolismo , Humanos , Transducción de Señal
18.
Sci Rep ; 8(1): 17419, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479371

RESUMEN

Despite our understanding of the functions of the kinesin family of motor proteins (Kifs) in neurons, their specific roles in neuronal communication are less understood. To address this, by carrying out RNAi-mediated loss of function studies, we assessed the necessity of 18 Kifs in excitatory synaptic transmission in mouse primary hippocampal neurons prepared from both sexes. Our measurements of excitatory post-synaptic currents (EPSCs) have identified 7 Kifs that were found to be not critical and 11 Kifs that are essential for synaptic transmission by impacting either frequency or amplitude or both components of EPSCs. Intriguingly we found that knockdown of mitotic Kif4A and Kif11 and post-mitotic Kif21B resulted in an increase in EPSCs suggesting that they function as inhibitory constraints on synaptic transmission. Furthermore, Kifs (11, 21B, 13B) with distinct effects on synaptic transmission are expressed in the same hippocampal neuron. Mechanistically, unlike Kif21B, Kif11 requires the activity of pre-synaptic NMDARs. In addition, we find that Kif11 knockdown enhanced dendritic arborization, synapse number, expression of synaptic vesicle proteins synaptophysin and active zone protein Piccolo. Moreover, expression of Piccolo constrained Kif11 function in synaptic transmission. Together these results suggest that neurons are able to utilize specific Kifs as tools for calibrating synaptic function. These studies bring novel insights into the biology of Kifs and functioning of neural circuits.


Asunto(s)
Potenciales Postsinápticos Excitadores , Cinesinas/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Hipocampo/citología , Cinesinas/genética , Ratones , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(43): E10197-E10205, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297415

RESUMEN

Despite the growing evidence suggesting that long noncoding RNAs (lncRNAs) are critical regulators of several biological processes, their functions in the nervous system remain elusive. We have identified an lncRNA, GM12371, in hippocampal neurons that is enriched in the nucleus and necessary for synaptic communication, synapse density, synapse morphology, and dendritic tree complexity. Mechanistically, GM12371 regulates the expression of several genes involved in neuronal development and differentiation, as well as expression of specific lncRNAs and their cognate mRNA targets. Furthermore, we find that cAMP-PKA signaling up-regulates the expression of GM12371 and that its expression is essential for the activity-dependent changes in synaptic transmission in hippocampal neurons. Taken together, our data establish a key role for GM12371 in regulating synapse function.


Asunto(s)
Regulación de la Expresión Génica/genética , ARN Largo no Codificante/genética , Sinapsis/genética , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Femenino , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Embarazo , Transducción de Señal/genética , Regulación hacia Arriba/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-28503670

RESUMEN

BACKGROUND: Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. METHODS: Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. RESULTS: We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. CONCLUSIONS: Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...