Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Autism Res ; 17(5): 917-922, 2024 May.
Article En | MEDLINE | ID: mdl-38576253

The mechanisms underlying atypical sensory processing in autism remain to be elucidated, but research points toward a role of the glutamatergic/GABAergic balance. To investigate the potential relationships between visual sensitivity and its molecular correlates in autism, we combined data from electroencephalography (EEG) and magnetic resonance spectroscopy (MRS) studies. Twenty autistic adults and sixteen neurotypical adults (NT) participated in both an EEG study assessing visual sensitivity (Sapey-Triomphe et al., Autism Research, 2023) and in an MRS study measuring Glx and GABA+ concentrations in the occipital cortex (Sapey-Triomphe et al., Molecular Autism, 2021). These studies revealed no group differences in neural detection thresholds or in Glx/GABA levels in the occipital cortex. Neural detection thresholds for contrast and spatial frequency (SF) were determined using fast periodic visual stimulations and neural frequency tagging. In the present study, Glx/GABA+ concentrations in the occipital cortex and neural detection thresholds did not differ between groups. Interestingly, lower Glx/GABA+ ratios were associated with lower contrast detection thresholds and higher SF detection thresholds. These correlations were also significant within the neurotypical and autistic groups. This report suggests that the Glx/GABA balance regulates visual detection thresholds across individuals. In both autistic and NTs, lower Glx/GABA ratios in the occipital cortex allow for better detection of visual inputs at the neural level. This study sheds light on the neurochemical underpinnings of visual sensitivity in autism and warrants further investigation.


Autistic Disorder , Electroencephalography , Magnetic Resonance Spectroscopy , Occipital Lobe , gamma-Aminobutyric Acid , Humans , Male , Adult , Female , Electroencephalography/methods , gamma-Aminobutyric Acid/metabolism , Autistic Disorder/physiopathology , Autistic Disorder/metabolism , Occipital Lobe/physiopathology , Occipital Lobe/metabolism , Magnetic Resonance Spectroscopy/methods , Young Adult , Visual Perception/physiology , Contrast Sensitivity/physiology , Photic Stimulation/methods , Glutamine/metabolism , Glutamic Acid/metabolism
2.
Autism Res ; 17(3): 512-528, 2024 Mar.
Article En | MEDLINE | ID: mdl-38279628

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.


Autism Spectrum Disorder , Autistic Disorder , Child , Humans , Magnetic Resonance Spectroscopy/methods , Autistic Disorder/metabolism , Brain , Glutathione/metabolism , gamma-Aminobutyric Acid/metabolism
3.
Transl Psychiatry ; 13(1): 320, 2023 10 18.
Article En | MEDLINE | ID: mdl-37852957

Altered reactivity and responses to auditory input are core to the diagnosis of autism spectrum disorder (ASD). Preclinical models implicate ϒ-aminobutyric acid (GABA) in this process. However, the link between GABA and auditory processing in humans (with or without ASD) is largely correlational. As part of a study of potential biosignatures of GABA function in ASD to inform future clinical trials, we evaluated the role of GABA in auditory repetition suppression in 66 adults (n = 28 with ASD). Neurophysiological responses (temporal and frequency domains) to repetitive standard tones and novel deviants presented in an oddball paradigm were compared after double-blind, randomized administration of placebo, 15 or 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. We first established that temporal mismatch negativity was comparable between participants with ASD and those with typical development (TD). Next, we showed that temporal and spectral responses to repetitive standards were suppressed relative to responses to deviants in the two groups, but suppression was significantly weaker in individuals with ASD at baseline. Arbaclofen reversed weaker suppression of spectral responses in ASD but disrupted suppression in TD. A post hoc analysis showed that arbaclofen-elicited shift in suppression was correlated with autistic symptomatology measured using the Autism Quotient across the entire group, though not in the smaller sample of the ASD and TD group when examined separately. Thus, our results confirm: GABAergic dysfunction contributes to the neurophysiology of auditory sensory processing alterations in ASD, and can be modulated by targeting GABAB activity. These GABA-dependent sensory differences may be upstream of more complex autistic phenotypes.


Autism Spectrum Disorder , Autistic Disorder , Adult , Humans , Auditory Perception/physiology , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Agonists/therapeutic use , gamma-Aminobutyric Acid
4.
bioRxiv ; 2023 Sep 29.
Article En | MEDLINE | ID: mdl-37808813

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a large cohort of children aged 8-12 years with ASD (n=52) and typically developing children (TDC, n=49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.

5.
Mol Autism ; 14(1): 31, 2023 08 28.
Article En | MEDLINE | ID: mdl-37635263

BACKGROUND: Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these "supra-modal" traits in the autistic population. METHODS: Leveraging a combined sample of 3868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a "general response pattern" factor for each supra-modal construct and determine the added value of "modality-specific response pattern" scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO, and SEEK (sub)constructs. RESULTS: All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses supported the validity of a supra-modal HYPER construct (ωH = .800) but not a supra-modal HYPO construct (ωH = .653), and supra-modal SEEK models suggested a more limited version of the construct that excluded some sensory modalities (ωH = .800; 4/7 modalities). Modality-specific subscales demonstrated significant added value for all response patterns. Meta-analytic correlations varied by construct, although sensory features tended to correlate most with other domains of core autism features and co-occurring psychiatric symptoms (with general HYPER and speech HYPO demonstrating the largest numbers of practically significant correlations). LIMITATIONS: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to caregiver report of observable behaviors and excluded multisensory items that reflect many "real-world" sensory experiences. CONCLUSION: Of the three sensory response patterns, only HYPER demonstrated sufficient evidence for valid interpretation at the supra-modal level, whereas supra-modal HYPO/SEEK constructs demonstrated substantial psychometric limitations. For clinicians and researchers seeking to characterize sensory reactivity in autism, modality-specific response pattern scores may represent viable alternatives that overcome many of these limitations.


Autistic Disorder , Adolescent , Humans , Bayes Theorem , Cognition , Data Analysis , Phenotype
6.
Mol Autism ; 14(1): 15, 2023 04 11.
Article En | MEDLINE | ID: mdl-37041612

BACKGROUND: Individuals on the autism spectrum have been long described to process sensory information differently than neurotypical individuals. While much effort has been leveraged towards characterizing and investigating the neurobiology underlying the sensory differences of autism, there has been a notable lack of consistency in the terms being used to describe the nature of those differences. MAIN BODY: We argue that inconsistent and interchangeable terminology-use when describing the sensory differences of autism has become problematic beyond mere pedantry and inconvenience. We begin by highlighting popular terms that are currently being used to describe the sensory differences of autism (e.g. "sensitivity", "reactivity" and "responsivity") and discuss why poor nomenclature may hamper efforts towards understanding the aetiology of sensory differences in autism. We then provide a solution to poor terminology-use by proposing a hierarchical taxonomy for describing and referring to various sensory features. CONCLUSION: Inconsistent terminology-use when describing the sensory features of autism has stifled discussion and scientific understanding of the sensory differences of autism. The hierarchical taxonomy proposed was developed to help resolve lack of clarity when discussing the sensory differences of autism and to place future research targets at appropriate levels of analysis.


Autism Spectrum Disorder , Autistic Disorder , Humans
7.
Res Sq ; 2023 Jan 10.
Article En | MEDLINE | ID: mdl-36712092

Background Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these "supra-modal" traits in the autistic population. Methods Leveraging a combined sample of 3,868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a "general response pattern" factor for each supra-modal construct and determine the added value of "modality-specific response pattern" scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO and SEEK (sub)constructs. Results All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses unambiguously supported the validity of a supra-modal HYPER construct (ω H = .800), whereas a coherent supra-modal HYPO construct was not supported (ω H = .611), and supra-modal SEEK models suggested a more limited version of the construct that excluded some sensory modalities (ω H = .799; 4/7 modalities). Within each sensory construct, modality-specific subscales demonstrated substantial added value beyond the supra-modal score. Meta-analytic correlations varied by construct, although sensory features tended to correlate most strongly with other domains of core autism features and co-occurring psychiatric symptoms. Certain subconstructs within the HYPO and SEEK domains were also associated with lower adaptive behavior scores. Limitations: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to parent-report of observable behaviors and excluded multisensory items that reflect many "real-world" sensory experiences. Conclusion Psychometric issues may limit the degree to which some measures of supra-modal HYPO/SEEK can be interpreted. Depending on the research question at hand, modality-specific response pattern scores may represent a valid alternative method of characterizing sensory reactivity in autism.

8.
J Autism Dev Disord ; 2022 Oct 22.
Article En | MEDLINE | ID: mdl-36272043

Sensory differences are highly prevalent in autistic individuals. However, few studies have compared their presentation between autistic males and autistic females. We used psychophysics to assess and compare tactile perceptual sensitivity between autistic and non-autistic boys and girls aged between 8 and 12 years of age. While there were sex-differences of amplitude discrimination, frequency discrimination and order judgement thresholds, these sex-differences were not autism-specific. Mean RTs and detection thresholds were elevated in autism but were comparable between the sexes. Tactile sensitivity measures that are elevated in autism but are otherwise comparable between autistic males and autistic females suggest the possibility that certain sensory features could be used as sex-indifferent markers of autism. Further investigation with larger and more representative samples should be conducted before any stronger conclusions are made.

9.
J Neurosci ; 42(31): 6121-6130, 2022 08 03.
Article En | MEDLINE | ID: mdl-35764380

Experiences of physical exertion guide our assessments of effort. While these assessments critically influence our decisions to engage in daily activities, little is known about how they are generated. We had female and male human participants exert grip force and assess how effortful these exertions felt; and used magnetic resonance spectroscopy to measure their brain GABA concentration. We found that variability in exertion (i.e., the coefficient of variation in their force exertion profile) was associated with increases in assessments of effort, making participants judge efforts as more costly. GABA levels in the sensorimotor cortex (SM1) moderated the influence of exertion variability on overassessments of effort. In individuals with higher sensorimotor GABA, exertion variability had a diminished influence on overassessments of effort. Essentially, sensorimotor GABA had a protective effect on the influence of exertion variability on inflations of effort assessment. Our findings provide a neurobiological account of how the brain's GABAergic system integrates features of physical exertion into judgments of effort, and how basic sensorimotor properties may influence higher-order judgments of effort.SIGNIFICANCE STATEMENT Feelings of effort critically shape our decisions to partake in activities of daily living. It remains unclear how the brain translates physical activity into judgments about effort (i.e., "How effortful did that activity feel?"). Using modeling of behavior and neuroimaging, we show how the nervous system uses information about physical exertion to generate assessments of effort. We found that higher variability in exertion was associated with increases in assessments of effort, making participants judge efforts as more costly. GABA, the brain's main inhibitory neurotransmitter, moderated the influence of exertion variability on overassessments of effort. These findings illustrate how low-level features of motor performance and sensorimotor neurochemistry influence higher-order cognitive processes related to feelings of effort.


Physical Exertion , Sensorimotor Cortex , Activities of Daily Living , Brain Mapping , Female , Humans , Male , Physical Exertion/physiology , Sensorimotor Cortex/physiology , gamma-Aminobutyric Acid
10.
Prog Neurobiol ; 212: 102247, 2022 05.
Article En | MEDLINE | ID: mdl-35149113

Understanding the neurophysiological mechanisms that drive human behavior has been a long-standing focus of cognitive neuroscience. One well-known neuro-metabolite involved in the creation of optimal behavioral repertoires is GABA, the main inhibitory neurochemical in the human brain. Converging evidence from both animal and human studies indicates that individual variations in GABAergic function are associated with behavioral performance. In humans, one increasingly used in vivo approach to measuring GABA levels is through Magnetic Resonance Spectroscopy (MRS). However, the implications of MRS measures of GABA for behavior remain poorly understood. In this respect, it is yet to be determined how GABA levels within distinct task-related brain regions of interest account for differences in behavioral performance. This review summarizes findings from cross-sectional studies that determined baseline MRS-assessed GABA levels and examined their associations with performance on various behaviors representing the perceptual, motor and cognitive domains, with a particular focus on healthy participants across the lifespan. Overall, the results indicate that MRS-assessed GABA levels play a pivotal role in various domains of behavior. Even though some converging patterns emerge, it is challenging to draw comprehensive conclusions due to differences in behavioral task paradigms, targeted brain regions of interest, implemented MRS techniques and reference compounds used. Across all studies, the effects of GABA levels on behavioral performance point to generic and partially independent functions that refer to distinctiveness, interference suppression and cognitive flexibility. On one hand, higher baseline GABA levels may support the distinctiveness of neural representations during task performance and better coping with interference and suppression of preferred response tendencies. On the other hand, lower baseline GABA levels may support a reduction of inhibition, leading to higher cognitive flexibility. These effects are task-dependent and appear to be mediated by age. Nonetheless, additional studies using emerging advanced methods are required to further clarify the role of MRS-assessed GABA in behavioral performance.


Brain , Magnetic Resonance Imaging , Animals , Cross-Sectional Studies , Humans , Magnetic Resonance Spectroscopy , gamma-Aminobutyric Acid
11.
Mov Disord ; 37(3): 563-573, 2022 03.
Article En | MEDLINE | ID: mdl-34854494

BACKGROUND: Individuals with Tourette syndrome (TS) often report that they express tics as a means of alleviating the experience of unpleasant sensations. These sensations are perceived as an urge to act and are referred to as premonitory urges. Premonitory urges have been the focus of recent efforts to develop interventions to reduce tic expression in those with TS. OBJECTIVE: The aim of this study was to examine the contribution of brain γ-aminobutyric acid (GABA) and glutamate levels of the right primary sensorimotor cortex (SM1), supplementary motor area (SMA), and insular cortex (insula) to tic and urge severity in children with TS. METHODS: Edited magnetic resonance spectroscopy was used to assess GABA+ (GABA + macromolecules) and Glx (glutamate + glutamine) of the right SM1, SMA, and insula in 68 children with TS (MAge = 10.59, SDAge = 1.33) and 41 typically developing control subjects (MAge = 10.26, SDAge = 2.21). We first compared GABA+ and Glx levels of these brain regions between groups. We then explored the association between regional GABA+ and Glx levels with urge and tic severity. RESULTS: GABA+ and Glx of the right SM1, SMA, and insula were comparable between the children with TS and typically developing control subjects. In children with TS, lower levels of SMA GABA+ were associated with more severe and more frequent premonitory urges. Neither GABA+ nor Glx levels were associated with tic severity. CONCLUSIONS: These results broadly support the role of GABAergic neurotransmission within the SMA in the experience of premonitory urges in children with TS. © 2021 International Parkinson and Movement Disorder Society.


Motor Cortex , Sensorimotor Cortex , Tic Disorders , Tics , Tourette Syndrome , Child , Child, Preschool , Glutamic Acid , Humans , Infant , Motor Cortex/diagnostic imaging , Tic Disorders/complications , Tics/complications , Tourette Syndrome/complications , gamma-Aminobutyric Acid
12.
Behav Res Methods ; 54(3): 1530-1540, 2022 06.
Article En | MEDLINE | ID: mdl-34751923

The stop-signal paradigm has become ubiquitous in investigations of inhibitory control. Tasks inspired by the paradigm, referred to as stop-signal tasks, require participants to make responses on go trials and to inhibit those responses when presented with a stop-signal on stop trials. Currently, the most popular version of the stop-signal task is the 'choice-reaction' variant, where participants make choice responses, but must inhibit those responses when presented with a stop-signal. An alternative to the choice-reaction variant of the stop-signal task is the 'anticipated response inhibition' task. In anticipated response inhibition tasks, participants are required to make a planned response that coincides with a predictably timed event (such as lifting a finger from a computer key to stop a filling bar at a predefined target). Anticipated response inhibition tasks have some advantages over the more traditional choice-reaction stop-signal tasks and are becoming increasingly popular. However, currently, there are no openly available versions of the anticipated response inhibition task, limiting potential uptake. Here, we present an open-source, free, and ready-to-use version of the anticipated response inhibition task, which we refer to as the OSARI (the Open-Source Anticipated Response Inhibition) task.


Inhibition, Psychological , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Reaction Time/physiology
13.
AJR Am J Roentgenol ; 218(2): 321-332, 2022 02.
Article En | MEDLINE | ID: mdl-34406053

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition that leads to impaired attention and impulsive behaviors diagnosed in, but not limited to, children. ADHD can cause symptoms throughout life. This article summarizes the structural (conventional, volumetric, and diffusion tensor imaging) and functional (task-based functional MRI [fMRI], resting-state fMRI, PET, and MR spectroscopy) brain findings in patients with ADHD. Consensus is lacking regarding altered anatomic or functional imaging findings of the brain in children with ADHD, likely because of the heterogeneity of the disorder. Most anatomic studies report abnormalities in the frontal lobes, basal ganglia, and corpus callosum; decreased surface area in the left ventral frontal and right prefrontal cortex; thinner medial temporal lobes; and smaller caudate nuclei. Using fMRI, researchers have focused on the prefrontal and temporal regions, reflecting perception-action mapping alterations. Artificial intelligence models evaluating brain anatomy have highlighted changes in cortical thickness and the shape of the inferior frontal cortex, bilateral sensorimotor cortex, left temporal lobe, and insula. Early intervention and/or normal brain maturation can alter imaging patterns and convert functional imaging studies to a normal pattern. Although imaging findings provide insight into the neuropathophysiology of the disease, no definitive structural or functional pattern defines the disorder from a neuroradiologic perspective.


Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain Mapping/methods , Diagnostic Imaging/methods , Neuroimaging/methods , Attention Deficit Disorder with Hyperactivity/physiopathology , Brain/diagnostic imaging , Brain/pathology , Child , Humans
14.
Mol Autism ; 12(1): 64, 2021 10 06.
Article En | MEDLINE | ID: mdl-34615532

BACKGROUND: According to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties making accurate predictions about their environment. In particular, the mechanisms by which they assign precision to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly mediated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological correlates. METHODS: Twenty-six neurotypical and 26 autistic adults participated in an associative learning task where they had to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), GABA + and glutathione in a low-level perceptual region (occipital cortex) and in a higher-level region involved in prediction learning (inferior frontal gyrus). RESULTS: Neurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/GABA + ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypical group. LIMITATIONS: We used a quite restrictive approach to select the MR spectra showing a good fit, which led to the exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions. CONCLUSIONS: Autistic adults appeared to have intact abilities to make predictions in this task, in contrast with the Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA + in a frontal region were associated with decreased predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might contribute to suboptimal predictive mechanisms in ASD in certain contexts.


Autism Spectrum Disorder , Autistic Disorder , Adult , Autism Spectrum Disorder/diagnostic imaging , Autistic Disorder/diagnostic imaging , Bayes Theorem , Glutamic Acid , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods
15.
Commun Biol ; 4(1): 1033, 2021 09 02.
Article En | MEDLINE | ID: mdl-34475515

Previous research has demonstrated that stress modulates the competitive interaction between the hippocampus and striatum, two structures known to be critically involved in motor sequence learning. These earlier investigations, however, have largely focused on blood oxygen-level dependent (BOLD) responses. No study to date has examined the link between stress, motor learning and levels of striatal and hippocampal gamma-aminobutyric acid (GABA). This knowledge gap is surprising given the known role of GABA in neuroplasticity subserving learning and memory. The current study thus examined: a) the effects of motor learning and stress on striatal and hippocampal GABA levels; and b) how learning- and stress-induced changes in GABA relate to the neural correlates of learning. To do so, fifty-three healthy young adults were exposed to a stressful or non-stressful control intervention before motor sequence learning. Striatal and hippocampal GABA levels were assessed at baseline and post-intervention/learning using magnetic resonance spectroscopy. Regression analyses indicated that stress modulated the link between striatal GABA levels and functional plasticity in both the hippocampus and striatum during learning as measured with fMRI. This study provides evidence for a role of GABA in the stress-induced modulation of striatal and hippocampal systems.


Corpus Striatum/physiology , Hippocampus/physiology , Learning/physiology , Stress, Physiological , gamma-Aminobutyric Acid/metabolism , Adult , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Young Adult
16.
Transl Psychiatry ; 11(1): 411, 2021 07 29.
Article En | MEDLINE | ID: mdl-34326312

Individuals on the autism spectrum are often reported as being hyper- and/or hyporeactive to sensory input. These sensory symptoms were one of the key observations that led to the development of the altered excitation-inhibition (E-I) model of autism, which posits that an increase ratio of excitatory to inhibitory signaling may explain certain phenotypical expressions of autism spectrum disorders (ASD). While there has been strong support for the altered E-I model of autism, much of the evidence has come from animal models. With regard to in-vivo human studies, evidence for altered E-I balance in ASD come from studies adopting magnetic resonance spectroscopy (MRS). Spectral-edited MRS can be used to provide measures of the levels of GABA + (GABA + macromolecules) and Glx (glutamate + glutamine) in specific brain regions as proxy markers of inhibition and excitation respectively. In the current study, we found region-specific elevations of Glx in the primary sensorimotor cortex (SM1) in ASD. There were no group differences of GABA+ in either the SM1 or thalamus. Higher levels of Glx were associated with more parent reported difficulties of sensory hyper- and hyporeactivity, as well as reduced feed-forward inhibition during tactile perception in children with ASD. Critically, the finding of elevated Glx provides strong empirical support for increased excitation in ASD. Our results also provide a clear link between Glx and the sensory symptoms of ASD at both behavioral and perceptual levels.


Autism Spectrum Disorder , Glutamine , Child , Glutamic Acid , Humans , Magnetic Resonance Spectroscopy , gamma-Aminobutyric Acid
17.
Neuroimage ; 237: 118158, 2021 08 15.
Article En | MEDLINE | ID: mdl-33991699

While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the stimulated prefrontal cortex and learning-related changes in both activity and connectivity in fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the best of our knowledge, that brain stimulation can alter motor learning-related functional responses in the striatum and hippocampus.


Caudate Nucleus/physiology , Connectome , Evoked Potentials, Motor/physiology , Hippocampus/physiology , Motor Activity/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Serial Learning/physiology , Transcranial Magnetic Stimulation , gamma-Aminobutyric Acid/metabolism , Adult , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Proof of Concept Study , Young Adult
18.
Clin Neurophysiol ; 132(5): 1163-1172, 2021 05.
Article En | MEDLINE | ID: mdl-33780723

OBJECTIVE: Compared to typically developing (TD) peers, children with attention deficit hyperactivity disorder (ADHD) manifest reduced short interval cortical inhibition (SICI) in the dominant motor cortex measured with transcranial magnetic stimulation (TMS). This multimodal study investigates the inhibitory neurophysiology and neurochemistry by evaluating the relationship between SICI and γ-amino butyric acid (GABA+) levels, measured with magnetic resonance spectroscopy (MRS). METHODS: Across two sites, 37 children with ADHD and 45 TD children, ages 8-12 years, participated. Single and paired pulse TMS to left motor cortex quantified SICI during REST and at times of action selection (GO) and inhibition (STOP) during a modified Slater-Hammel stop signal reaction task. MRS quantified GABA+ levels in the left sensorimotor cortex. Relationships between SICI and GABA+, as well as stopping efficiency and clinical symptoms, were analyzed with correlations and repeated-measure, mixed-models. RESULTS: In both groups, higher GABA+ levels correlated with less SICI. In TD children only, higher GABA+ levels correlated with larger TMS motor evoked potentials (MEPs) at REST. In GO and STOP trials, higher GABA+ was associated with smaller MEP amplitudes, for both groups. Overall, GABA+ levels did not differ between groups or correlate with ADHD clinical symptoms. CONCLUSIONS: In children with higher motor cortex GABA+, motor cortex is less responsive to inhibitory TMS (SICI). Comparing the relationships between MRS-GABA+ levels and responses to TMS at REST vs. GO/STOP trials suggests differences in inhibitory neurophysiology and neurotransmitters in children with ADHD. These differences are more prominent at rest than during response inhibition task engagement. SIGNIFICANCE: Evaluating relationships between GABA+ and SICI may provide a biomarker useful for understanding behavioral diagnoses.


Attention Deficit Disorder with Hyperactivity/physiopathology , Brain/physiopathology , Cortical Excitability , gamma-Aminobutyric Acid/metabolism , Brain/diagnostic imaging , Brain/metabolism , Child , Evoked Potentials, Motor , Female , Humans , Magnetic Resonance Imaging , Male , Neural Inhibition , Transcranial Magnetic Stimulation
19.
Neuroimage ; 233: 117930, 2021 06.
Article En | MEDLINE | ID: mdl-33711485

Balance between inhibitory and excitatory neurotransmitter systems and the protective role of the major antioxidant glutathione (GSH) are central to early healthy brain development. Disruption has been implicated in the early life pathophysiology of psychiatric disorders and neurodevelopmental conditions including Autism Spectrum Disorder. Edited magnetic resonance spectroscopy (MRS) methods such as HERMES have great potential for providing important new non-invasive insights into these crucial processes in human infancy. In this work, we describe a systematic approach to minimise the impact of specific technical challenges inherent to acquiring MRS data in a neonatal population, including automatic segmentation, full tissue-correction and optimised GABA+ fitting and consider the minimum requirements for a robust edited-MRS acquisition. With this approach we report for the first time simultaneous GABA+, Glx (glutamate + glutamine) and GSH concentrations in the neonatal brain (n = 18) in two distinct regions (thalamus and anterior cingulate cortex (ACC)) using edited MRS at 3T. The improved sensitivity provided by our method allows specific regional neurochemical differences to be identified including: significantly lower Glx and GSH ratios to total creatine in the thalamus compared to the ACC (p < 0.001 for both), and significantly higher GSH levels in the ACC following tissue-correction (p < 0.01). Furthermore, in contrast to adult GABA+ which can typically be accurately fitted with a single peak, all neonate spectra displayed a characteristic doublet GABA+ peak at 3 ppm, indicating a lower macromolecule (MM) contribution to the 3 ppm signal in neonates. Relatively high group-level variance shows the need to maximise voxel size/acquisition time in edited neonatal MRS acquisitions for robust estimation of metabolites. Application of this method to study how these levels and balance are altered by early-life brain injury or genetic risk can provide important new knowledge about the pathophysiology underlying neurodevelopmental disorders.


Brain/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Glutathione/metabolism , Magnetic Resonance Spectroscopy/methods , gamma-Aminobutyric Acid/metabolism , Brain/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Humans , Infant, Newborn , Male , Thalamus/diagnostic imaging , Thalamus/metabolism
20.
Commun Biol ; 4(1): 97, 2021 01 22.
Article En | MEDLINE | ID: mdl-33483581

Alterations of tactile processing have long been identified in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). However, the extent to which these alterations are disorder-specific, rather than disorder-general, and how they relate to the core symptoms of each disorder, remains unclear. We measured and compared tactile detection, discrimination, and order judgment thresholds between a large sample of children with ASD, ADHD, ASD + ADHD combined and typically developing controls. The pattern of results suggested that while difficulties with tactile detection and order judgement were more common in children with ADHD, difficulties with tactile discrimination were more common in children with ASD. Interestingly, in our subsequent correlation analyses between tactile perception and disorder-specific clinical symptoms, tactile detection and order judgment correlated exclusively with the core symptoms of ADHD, while tactile discrimination correlated exclusively with the symptoms of ASD. When taken together, these results suggest that disorder-specific alterations of lower-level sensory processes exist and are specifically related to higher-level clinical symptoms of each disorder.


Attention Deficit Disorder with Hyperactivity/psychology , Autism Spectrum Disorder/psychology , Touch Perception , Case-Control Studies , Child , Female , Humans , Male
...