Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 273, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347224

RESUMEN

The global surplus of reactive nitrogen (Nr) in agricultural soils is accelerating nitrous oxide (N2O) emission rates, and may also strongly influence the microbial controls of this greenhouse gas resulting in positive feedbacks that further exacerbate N2O emissions. Yet, the link between legacy effects of Nr on microbial communities and altered regulation of N2O emissions is unclear. By examining soils with legacies of Nr-addition from 14 field experiments with different edaphic backgrounds, we show that increased potential N2O production is associated with specific phylogenetic shifts in communities of frequently occurring soil microbes. Inputs of Nr increased the complexity of microbial co-association networks, and altered the relative importance of biotic and abiotic predictors of potential N2O emissions. Our results provide a link between the microbial legacy of Nr addition and increased N2O emissions by demonstrating that biological controls of N2O emissions were more important in unfertilized soils and that these controls are weakened by increasing resource levels in soil.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Gases de Efecto Invernadero/análisis , Nitrógeno , Óxido Nitroso/análisis , Filogenia , Suelo/química
2.
Environ Microbiol ; 20(8): 2927-2940, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30051650

RESUMEN

Seafloor microorganisms impact global carbon cycling by mineralizing vast quantities of organic matter (OM) from pelagic primary production, which is predicted to increase in the Arctic because of diminishing sea ice cover. We studied microbial interspecies-carbon-flow during anaerobic OM degradation in arctic marine sediment using stable isotope probing. We supplemented sediment incubations with 13 C-labeled cyanobacterial necromass (spirulina), mimicking fresh OM input, or acetate, an important OM degradation intermediate and monitored sulfate reduction rates and concentrations of volatile fatty acids (VFAs) during substrate degradation. Sequential 16S rRNA gene and transcript amplicon sequencing and fluorescence in situ hybridization combined with Raman microspectroscopy revealed that only few bacterial species were the main degraders of 13 C-spirulina necromass. Psychrilyobacter, Psychromonas, Marinifilum, Colwellia, Marinilabiaceae and Clostridiales species were likely involved in the primary hydrolysis and fermentation of spirulina. VFAs, mainly acetate, produced from spirulina degradation were mineralized by sulfate-reducing bacteria and an Arcobacter species. Cellular activity of Desulfobacteraceae and Desulfobulbaceae species during acetoclastic sulfate reduction was largely decoupled from relative 16S rRNA gene abundance shifts. Our findings provide new insights into the identities and physiological constraints that determine the population dynamics of key microorganisms during complex OM degradation in arctic marine sediments.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Sedimentos Geológicos/microbiología , Sulfatos/metabolismo , Sulfuros/metabolismo , Regiones Árticas , Ácidos Grasos Volátiles/metabolismo , Hibridación Fluorescente in Situ , Oxidación-Reducción , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...