Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article En | MEDLINE | ID: mdl-34638546

Sepsis is the leading cause of death in intensive care units worldwide. Current treatments of sepsis are largely supportive and clinical trials using specific pharmacotherapy for sepsis have failed to improve outcomes. Here, we used the lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cell line and AlphaLisa assay for TNFa as a readout to perform a supervised drug repurposing screen for sepsis treatment with compounds targeting epigenetic enzymes, including kinases. We identified the SCH772984 compound, an extracellular signal-regulated kinase (ERK) 1/2 inhibitor, as an effective blocker of TNFa production in vitro. RNA-Seq of the SCH772984-treated RAW264.7 cells at 1, 4, and 24 h time points of LPS challenge followed by functional annotation of differentially expressed genes highlighted the suppression of cellular pathways related to the immune system. SCH772984 treatment improved survival in the LPS-induced lethal endotoxemia and cecal ligation and puncture (CLP) mouse models of sepsis, and reduced plasma levels of Ccl2/Mcp1. Functional analyses of RNA-seq datasets for kidney, lung, liver, and heart tissues from SCH772984-treated animals collected at 6 h and 12 h post-CLP revealed a significant downregulation of pathways related to the immune response and platelets activation but upregulation of the extracellular matrix organization and retinoic acid signaling pathways. Thus, this study defined transcriptome signatures of SCH772984 action in vitro and in vivo, an agent that has the potential to improve sepsis outcome.


Anti-Inflammatory Agents/pharmacology , Endotoxemia/drug therapy , Indazoles/pharmacology , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Piperazines/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Triazoles/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Cell Line , Chemokine CCL2/blood , Disease Models, Animal , Down-Regulation/drug effects , Drug Repositioning , Endotoxemia/mortality , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Platelet Activation/drug effects , RAW 264.7 Cells , Transcriptome/genetics
2.
Sci Rep ; 11(1): 10017, 2021 05 11.
Article En | MEDLINE | ID: mdl-33976256

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) genes occur in about 20% patients with acute myeloid leukemia (AML), leading to DNA hypermethylation and epigenetic deregulation. We assessed the prognostic significance of IDH1/2 mutations (IDH1/2+) in 398 AML patients with normal karyotype (NK-AML), treated with daunorubicine + cytarabine (DA), DA + cladribine (DAC), or DA + fludarabine. IDH2 mutation was an independent favorable prognostic factor for 4-year overall survival (OS) in total NK-AML population (p = 0.03, censoring at allotransplant). We next evaluated the effect of addition of cladribine to induction regimen on the patients' outcome according to IDH1/2 mutation status. In DAC group, 4-year OS was increased in IDH2+ patients, compared to IDH-wild type group (54% vs 33%; p = 0.0087, censoring at allotransplant), while no difference was observed for DA-treated subjects. In multivariate analysis, DAC independently improved the survival of IDH2+ patients (HR = 0.6 [0.37-0.93]; p = 0.024; censored at transplant), indicating that this group specifically benefits from cladribine-containing therapy. In AML cells with R140Q or R172K IDH2 mutations, cladribine restrained mutations-related DNA hypermethylation. Altogether, DAC regimen produces better outcomes in IDH2+ NK-AML patients than DA, and this likely results from the hypomethylating activity of cladribine. Our observations warrant further investigations of induction protocols combining cladribine with IDH1/2 inhibitors in IDH2-mutant.


Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Adolescent , Adult , Aged , Cladribine/therapeutic use , Cytarabine/therapeutic use , Daunorubicin/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Middle Aged , Pharmacogenomic Variants , Poland/epidemiology , Randomized Controlled Trials as Topic , Retrospective Studies , Young Adult
3.
Drug Dev Res ; 82(6): 730-753, 2021 09.
Article En | MEDLINE | ID: mdl-33565092

Enhancer of zeste homolog 2 (EZH2), a catalytic component of polycomb repressive complex 2 (PRC2), is commonly overexpressed or mutated in many cancer types, both of hematological and solid nature. Till now, plenty of EZH2 small molecule inhibitors have been developed and some of them have already been tested in clinical trials. Most of these inhibitors, however, are effective only in limited cases in the context of EZH2 gain-of-function mutated tumors such as lymphomas. Other cancer types with aberrant EZH2 expression and function require alternative approaches for successful treatment. One possibility is to exploit synthetic lethal strategy, which is based on the phenomenon that concurrent loss of two genes is detrimental but the deletion of either of them leaves cell viable. In the context of EZH2/PRC2, the most promising synthetic lethal target seems to be SWItch/Sucrose Non-Fermentable chromatin remodeling complex (SWI/SNF), which is known to counteract PRC2 functions. SWI/SNF is heavily involved in carcinogenesis and its subunits have been found mutated in approximately 20% of tumors of different kinds. In the current review, we summarize the existing knowledge of synthetic lethal relationships between EZH2/PRC2 and components of the SWI/SNF complex and discuss in detail the potential application of existing EZH2 inhibitors in cancer patients harboring mutations in SWI/SNF proteins. We also highlight recent discoveries of EZH2 involvement in tumor microenvironment regulation and consequences for future therapies. Although clinical studies are limited, the fundamental research might help to understand which patients are most likely to benefit from therapies using EZH2 inhibitors.


Enhancer of Zeste Homolog 2 Protein , Neoplasms , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Tumor Microenvironment
4.
Eur J Med Chem ; 213: 113057, 2021 Mar 05.
Article En | MEDLINE | ID: mdl-33303237

The mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (MNKs 1/2) and their downstream target eIF4E, play a role in oncogenic transformation, progression and metastasis. These results provided rationale for development of first MNKs inhibitors, currently in clinical trials for cancer treatment. Inhibitors of the MNKs/eIF4E pathway are also proposed as treatment strategy for inflammatory conditions. Here we present results of optimization of indazole-pyridinone derived MNK1/2 inhibitors among which compounds 24 and 26, selective and metabolically stable derivatives. Both compounds decreased levels of eIF4E Ser206 phosphorylation (pSer209-eIF4E) in MOLM16 cell line. When administered in mice compounds 24 and 26 significantly improved survival rates of animals in the endotoxin lethal dose challenge model, with concomitant reduction of proinflammatory cytokine levels - TNFα and IL-6 in serum. Identified MNK1/2 inhibitors represent a novel class of immunomodulatory compounds with a potential for the treatment of inflammatory diseases including sepsis.


Immunologic Factors/chemical synthesis , Indazoles/chemistry , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridones/chemistry , Shock, Septic/drug therapy , Amino Acid Sequence , Animals , Cytokines/metabolism , Dose-Response Relationship, Drug , Drug Discovery , Endotoxins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Humans , Immunologic Factors/pharmacology , Mice , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Shock, Septic/chemically induced , Signal Transduction , Structure-Activity Relationship
5.
Metabolites ; 10(5)2020 Apr 27.
Article En | MEDLINE | ID: mdl-32349447

Triple-negative breast cancer (TNBC) is characterized by limited survival, poor prognosis, and high recurrence. Understanding the metabolic adaptations of TNBC could help reveal improved treatment regiments. Here we performed a comprehensive 1H NMR metabolic characterization of the MDA-MB-468 cell line, a commonly used model of TNBC, followed by an analysis of serum samples obtained from TNBC patients and healthy controls. MDA-MB-468 cells were cultured, and changes in the metabolic composition of the medium were monitored for 72 h. Based on time courses, metabolites were categorized as being consumed, being produced, or showing a mixed behavior. When comparing TNBC and control samples (HC), and by using multivariate and univariate analyses, we identified nine metabolites with differing profiles). The serum of TNBC patients was characterized by higher levels of glucose, glutamine, citrate, and acetoacetate and by lower levels of lactate, alanine, tyrosine, glutamate, and acetone. A comparative analysis between MDA-MB-468 cell culture media and TNBC patients' serum identified a potential systemic response to the carcinogenesis-associated processes, highlighting that MDA-MB-468 cells footprint does not reflect metabolic changes observed in studied TNBC serum fingerprint.

6.
Cancers (Basel) ; 12(3)2020 Mar 03.
Article En | MEDLINE | ID: mdl-32138178

Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo.

...