Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 14(1): 7752, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565858

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Composting , Greenhouse Gases , Soil , Agriculture/methods , Triticum , Carbon , Charcoal , Sodium Chloride , Sodium Chloride, Dietary , Nitrous Oxide/analysis , Carbon Dioxide/analysis
2.
Environ Sci Pollut Res Int ; 30(51): 109889-109920, 2023 Nov.
Article En | MEDLINE | ID: mdl-37792186

Soil salinization is a serious environmental problem that affects agricultural productivity and sustainability worldwide. Organic amendments have been considered a practical approach for reclaiming salt-affected soils. In addition to improving soil physical and chemical properties, organic amendments have been found to promote the build-up of new halotolerant bacterial species and microbial diversity, which plays a critical role in maintaining soil health, carbon dynamics, crop productivity, and ecosystem functioning. Many reported studies have indicated the development of soil microbial diversity in organic amendments amended soil. But they have reported only the development of microbial diversity and their identification. This review article provides a comprehensive summary of the current knowledge on the use of different organic amendments for the reclamation of salt-affected soils, focusing on their effects on soil properties, microbial processes and species, development of soil microbial diversity, and microbial processes to tolerate salinity levels and their strategies to cope with it. It also discusses the factors affecting the microbial species developments, adaptation and survival, and carbon dynamics. This review is based on the concept of whether addition of specific organic amendment can promote specific halotolerant microbe species, and if it is, then which amendment is responsible for each microbial species' development and factors responsible for their survival in saline environments.


Rhizosphere , Soil , Soil/chemistry , Ecosystem , Soil Microbiology , Biota , Carbon , Sodium Chloride , Sodium Chloride, Dietary
3.
Environ Sci Pollut Res Int ; 27(32): 39742-39752, 2020 Nov.
Article En | MEDLINE | ID: mdl-31993896

In the developing world, rapid urbanization and industrialization produces an enormous volume of wastes daily. This study was aimed to explore the potential and risks associated with sewage sludge through the characterization and fractionation technique. Sewage sludge samples were collected from various wastewater treatment in five different cities of Pakistan. Considerable amounts of macro-elements were detected in all types of sewage sludge samples. The pHw of all sewage sludge were neutral to slightly alkaline in reaction. Total organic carbon (TOC) was maximum (18.73%) with Coca-Cola sewage sludge (CSS) while the minimum (14.69%) was with Water and Sanitation Agency (WASA) sewage sludge (WSS). Percent relative distribution of cadmium (Cd) was higher in residual fraction (F4) up to 52% in the Nestle wastewater treatment plant, Sheikhupura (NSS). The chromium (Cr) concentration in Kasur sewage sludge (KSS) was extremely in mobile fraction (exchangeable) as compared with all other sludge samples, therefore showing a higher level of risk assessment code. While in the case of Iron (Fe), mobility was less and its maximum portion was noted in residual fraction (F4) of all sewage sludge samples. Percent distribution of manganese (Mn) showed variable trends for different sewage sludge samples. Zinc (Zn) concentration showed high mobility (exchangeable fraction) in case of NUST wastewater treatment plant, Islamabad (NTS) (31.16%) and WSS (37.83%) as compared with other sewage sludges. The risk assessment code indicated that Zn and Ni had a medium level of risk with I-9 Sector wastewater treatment plant, Islamabad (ISS), CSS, KSS, and NSS whereas these pose a high risk with NTS and WSS. Based on physicochemical properties, nutrients, trace elements, mobility, and risk assessment code, it was concluded that KSS should not be recommended at any application rate while NTS and WSS may be used at low application rates whereas ISS, CSS, and NSS may be used for agricultural crop production.


Metals, Heavy , Trace Elements , Chemical Fractionation , Cities , Metals, Heavy/analysis , Pakistan , Risk Assessment , Sewage
...