Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897735

RESUMEN

Ethylene response factors (ERFs) are involved in biotic and abiotic stress; however, the drought resistance mechanisms of many ERFs in soybeans have not been resolved. Previously, we proved that GmERF113 enhances resistance to the pathogen Phytophthora sojae in soybean. Here, we determined that GmERF113 is induced by 20% PEG-6000. Compared to the wild-type plants, soybean plants overexpressing GmERF113 (GmERF113-OE) displayed increased drought tolerance which was characterized by milder leaf wilting, less water loss from detached leaves, smaller stomatal aperture, lower Malondialdehyde (MDA) content, increased proline accumulation, and higher Superoxide dismutase (SOD) and Peroxidase (POD) activities under drought stress, whereas plants with GmERF113 silenced through RNA interference were the opposite. Chromatin immunoprecipitation and dual effector-reporter assays showed that GmERF113 binds to the GCC-box in the GmPR10-1 promoter, activating GmPR10-1 expression directly. Overexpressing GmPR10-1 improved drought resistance in the composite soybean plants with transgenic hairy roots. RNA-seq analysis revealed that GmERF113 downregulates abscisic acid 8'-hydroxylase 3 (GmABA8'-OH 3) and upregulates various drought-related genes. Overexpressing GmERF113 and GmPR10-1 increased the abscisic acid (ABA) content and reduced the expression of GmABA8'-OH3 in transgenic soybean plants and hairy roots, respectively. These results reveal that the GmERF113-GmPR10-1 pathway improves drought resistance and affects the ABA content in soybean, providing a theoretical basis for the molecular breeding of drought-tolerant soybean.


Asunto(s)
Sequías , Glycine max , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Glycine max/metabolismo , Estrés Fisiológico/genética
2.
Sci Rep ; 7(1): 7242, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28775360

RESUMEN

Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by Phytophthora sojae is a destructive disease worldwide. Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes related to plant responses to biotic and abiotic stresses. However, the molecular mechanism of PAL in soybean in response to P. sojae is largely unclear. Here, we characterize a novel member of the soybean PAL gene family, GmPAL2.1, which is significantly induced by P. sojae. Overexpression and RNA interference analysis demonstrates that GmPAL2.1 enhances resistance to P. sojae in transgenic soybean plants. In addition, the PAL activity in GmPAL2.1-OX transgenic soybean is significantly higher than that of non-transgenic plants after infection with P. sojae, while that in GmPAL2.1-RNAi soybean plants is lower. Further analyses show that the daidzein, genistein and salicylic acid (SA) levels and the relative content of glyceollins are markedly increased in GmPAL2.1-OX transgenic soybean. Taken together, these results suggest the important role of GmPAL2.1 functioning as a positive regulator in the soybean response to P. sojae infection, possibly by enhancing the content of glyceollins, daidzein, genistein and SA.


Asunto(s)
Glycine max/genética , Glycine max/parasitología , Interacciones Huésped-Parásitos/genética , Fenilanina Amoníaco-Liasa/genética , Phytophthora , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Biomarcadores , Clonación Molecular , Resistencia a la Enfermedad/genética , Activación Enzimática , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Fenilanina Amoníaco-Liasa/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Semillas/metabolismo , Análisis de Secuencia de ADN , Glycine max/metabolismo , Estrés Fisiológico/genética
3.
Front Plant Sci ; 8: 299, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28326092

RESUMEN

Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean 'Suinong 10.' Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar 'Dongnong 50' soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...