Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402645, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738739

RESUMEN

The photocatalytic reduction of CO2 represents an environmentally friendly and sustainable approach for generating valuable chemicals. In this study, a thiophene-modified highly conjugated asymmetric covalent triazine framework (As-CTF-S) is developed for this purpose. Significantly, single-component intramolecular energy transfer can enhance the photogenerated charge separation, leading to the efficient conversion of CO2 to CO during photocatalysis. As a result, without the need for additional photosensitizers or organic sacrificial agents, As-CTF-S demonstrates the highest photocatalytic ability of 353.2 µmol g-1 and achieves a selectivity of ≈99.95% within a 4 h period under visible light irradiation. This study provides molecular insights into the rational control of charge transfer pathways for high-efficiency CO2 photoreduction using single-component organic semiconductor catalysts.

2.
Inorg Chem ; 62(39): 15963-15970, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37725073

RESUMEN

Solar-driven high-efficiency conversion of CO2 with water vapor into high-value-added alcohols is a promising approach for reducing CO2 emissions and achieving carbon neutrality. However, the rapid recombination of photogenerated carriers and low CO2 adsorption capacity of photocatalysts are usually the factors that limit their applicability. Herein, a series of low-cost Z-scheme heterostructures Cu2O/PCN-250-x are constructed by in situ growth of ultrasmall Cu2O nanoparticles on PCN-250. A systematic investigation revealed that there is a strong interaction between Cu2O nanoparticles and PCN-250. The resulting Cu2O/PCN-250-2 exhibits excellent photogenerated carrier separation efficiency and CO2 adsorption capacity, which dramatically promote the conversion of CO2 into alcohols. Notably, the total yield of 268 µmol gcat-1 for the production of CH3OH and CH3H2OH is superior to that of isolated PCN-250 and Cu2O. This study provides a new perspective for the design of a Cu2O nanoparticle/metal-organic framework Z-scheme heterojunction for the reduction of CO2 to alcohols with water vapor.

3.
Biochem Pharmacol ; 214: 115664, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331636

RESUMEN

Oxidative stress, inflammation, mitochondrial dysfunction, reduced protein synthesis, and increased proteolysis are all critical factors in the process of muscle atrophy. In particular, oxidative stress is the key factor that triggers skeletal muscle atrophy. It is activated in the early stages of muscle atrophy and can be regulated by various factors. The mechanisms of oxidative stress in the development of muscle atrophy have not been completely elucidated. This review provides an overview of the sources of oxidative stress in skeletal muscle and the correlation of oxidative stress with inflammation, mitochondrial dysfunction, autophagy, protein synthesis, proteolysis, and muscle regeneration in muscle atrophy. Additionally, the role of oxidative stress in skeletal muscle atrophy caused by several pathological conditions, including denervation, unloading, chronic inflammatory diseases (diabetes mellitus, chronic kidney disease, chronic heart failure, and chronic obstructive pulmonary disease), sarcopenia, hereditary neuromuscular diseases (spinal muscular atrophy, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy), and cancer cachexia, have been discussed. Finally, this review proposes the alleviation oxidative stress using antioxidants, Chinese herbal extracts, stem cell and extracellular vesicles as a promising therapeutic strategy for muscle atrophy. This review will aid in the development of novel therapeutic strategies and drugs for muscle atrophy.


Asunto(s)
Atrofia Muscular , Sarcopenia , Humanos , Atrofia Muscular/metabolismo , Estrés Oxidativo , Músculo Esquelético/metabolismo , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patología , Antioxidantes/metabolismo , Enfermedad Crónica
4.
Biochem Pharmacol ; 208: 115407, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596414

RESUMEN

Chronic kidney disease (CKD) is a high-risk chronic catabolic disease due to its high morbidity and mortality. CKD is accompanied by many complications, leading to a poor quality of life, and serious complications may even threaten the life of CKD patients. Muscle atrophy is a common complication of CKD. Muscle atrophy and sarcopenia in CKD patients have complex pathways that are related to multiple mechanisms and related factors. This review not only discusses the mechanisms by which inflammation, oxidative stress, mitochondrial dysfunction promote CKD-induced muscle atrophy but also explores other CKD-related complications, such as metabolic acidosis, vitamin D deficiency, anorexia, and excess angiotensin II, as well as other related factors that play a role in CKD muscle atrophy, such as insulin resistance, hormones, hemodialysis, uremic toxins, intestinal flora imbalance, and miRNA. We highlight potential treatments and drugs that can effectively treat CKD-induced muscle atrophy in terms of complication treatment, nutritional supplementation, physical exercise, and drug intervention, thereby helping to improve the prognosis and quality of life of CKD patients.


Asunto(s)
Calidad de Vida , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Enfermedad Crónica , Estrés Oxidativo
5.
Front Endocrinol (Lausanne) ; 13: 917113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846289

RESUMEN

Diabetes mellitus (DM) is a typical chronic disease that can be divided into 2 types, dependent on insulin deficiency or insulin resistance. Incidences of diabetic complications gradually increase as the disease progresses. Studies in diabetes complications have mostly focused on kidney and cardiovascular diseases, as well as neuropathy. However, DM can also cause skeletal muscle atrophy. Diabetic muscular atrophy is an unrecognized diabetic complication that can lead to quadriplegia in severe cases, seriously impacting patients' quality of life. In this review, we first identify the main molecular mechanisms of muscle atrophy from the aspects of protein degradation and synthesis signaling pathways. Then, we discuss the molecular regulatory mechanisms of diabetic muscular atrophy, and outline potential drugs and treatments in terms of insulin resistance, insulin deficiency, inflammation, oxidative stress, glucocorticoids, and other factors. It is worth noting that inflammation and oxidative stress are closely related to insulin resistance and insulin deficiency in diabetic muscular atrophy. Regulating inflammation and oxidative stress may represent another very important way to treat diabetic muscular atrophy, in addition to controlling insulin signaling. Understanding the molecular regulatory mechanism of diabetic muscular atrophy could help to reveal new treatment strategies.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Experimental , Neuropatías Diabéticas , Resistencia a la Insulina , Animales , Complicaciones de la Diabetes/complicaciones , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/complicaciones , Humanos , Inflamación/complicaciones , Insulina/metabolismo , Insulina/uso terapéutico , Atrofia Muscular/etiología , Calidad de Vida
6.
Transl Androl Urol ; 10(11): 4288-4297, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34984193

RESUMEN

BACKGROUND: Doctors often use a small dose of hydroxyethyl starch (HES) 130/0.4 sodium chloride solution in the emergency room; however, its effect on kidney function remains controversial. This study aimed to evaluate the effect of a small dose of HES130/0.4 sodium chloride solution on kidney function in shock patients during early fluid resuscitation. METHODS: This cohort study retrospectively analyzed the data of 129 shock patients requiring fluid resuscitation who had been admitted to the Emergency Department of the Affiliated Hospital of Nantong University from January 2019 to December 2020. Patients were divided into the observation group (n=40) and control group (n=89) according to the type of fluid resuscitation. In relation to the fluid resuscitation treatment, the observation group was treated with crystalloid solution, while the control group was treated with crystalloid and HES130/0.4 sodium chloride solution. To further explore the effect of a small dose of HES130/0.4 sodium chloride solution, the patients were further divided into the following 4 groups based on the specific fluid administered: (I) the HES(+), lactated Ringer's (LR)(+) group (n=85); (II) the HES(+), LR(-) group (n=4); (III) the HES(-), LR(+) group (n=31); and (IV) the HES(-), LR(-) group (n=9). The outcomes were in-hospital mortality and changes in creatinine (CR) level after fluid resuscitation. RESULTS: There were no significant differences in the in-hospital mortality rates between the observation and control groups (P=0.343). The CR levels of patients in the control and HES(+), LR(+) groups were reduced after fluid resuscitation (P=0.034; P=0.028). There was no significant change in patients' CR levels in the HES(+), LR(-) group after fluid resuscitation (P=0.999). CONCLUSIONS: Administering a small dose of HES 130/0.4 sodium chloride in patients with shock does not appear to affect kidney function and in-hospital mortality; however, these findings should be considered exploratory, and further studies should be conducted to confirm these results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...