Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(37): 15696-15702, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39248639

RESUMEN

Complexes featuring metal-metal bonds play crucial roles in catalysis and small molecule activation due to the synergistic effects between the metals. Here, we report a series of homometallic cobalt complexes with metal-metal interactions that have been successfully stabilized by a multidentate ligand platform. Theoretical studies on metal-metal interactions in these cobalt complexes are discussed.

2.
Acta Pharm Sin B ; 14(7): 3251-3265, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027238

RESUMEN

Selective activation of Pt(IV) prodrugs within tumors has emerged as a promising strategy in tumor treatment. Although progress has been made with photo- and ultrasound-activated Pt(IV) prodrugs, concerns remain over the non-specific activation of photosensitizers (PS) and the potential for phototoxicity and chemical toxicity. In this study, a sequential dual-locked Pt(IV) nano-prodrug that can be activated by both the acidic tumor microenvironment and light was developed. The Pt(IV) prodrug was prepared by conjugating PS-locked Pt(IV) to a polymeric core, which was then chelated with metallo iron to lock its photoactivity and form a metallo-nano prodrug. Under acidic tumor microenvironment conditions, the metallo-nano prodrug undergoes dissociation of iron, triggering a reduction process in oxaliplatin under light irradiation, resulting in the activation of both chemotherapy and photodynamic therapy (PDT). Additionally, the prodrug could induce metallo-triggered ferroptosis and polarization of tumor-associated macrophages (TAM), thereby enhancing tumor inhibition. The dual-lock strategy employed in a nanoparticle delivery system represents an expansion in the application of platinum-based anticancer drugs, making it a promising new direction in cancer treatment.

4.
Biochem Pharmacol ; 222: 116117, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38461903

RESUMEN

Oxaliplatin (OXA) is a platinum-based chemotherapeutic agent with promising applications in the treatment of various malignancies, particularly colorectal cancer (CRC). However, the management of OXA resistance remains an ongoing obstacle in CRC therapy. This study aims to comprehensively investigate the immune landscape, targeted therapeutic biomarkers, and mechanisms that influence OXA resistance in CRC. Our results demonstrated that our OXA- resistant CRC prognostic model not only provides risk assessment for patients but also reflects the immune landscape of patients. Additionally, we identified prostate transmembrane protein, androgen-induced1 (PMEPA1) as a promising molecular targeted therapeutic biomarker for patients with OXA-resistant CRC. The mechanism of PMEPA1 may involve cell adhesion, pathways in cancer, and the TGF-ß signaling pathway. Furthermore, analysis of CRC clinical samples indicated that patients resistant to OXA exhibited elevated serum levels of TGF-ß1, increased expression of PMEPA1 in tumors, a lower proportion of CD8+ T cell positivity, and a higher proportion of M0 macrophage positivity, in comparison to OXA-sensitive individuals. Cellular experiments indicated that selective silencing of PMEPA1, alone or in combination with OXA, inhibited proliferation and metastasis in OXA-resistant CRC cells, HCT116R. Animal experiments further confirmed that PMEPA1 silencing suppressed subcutaneous graft tumor growth and liver metastasis in mice bearing HCT116R and synergistically enhanced the efficacy of OXA. These data highlight the potential of leveraging the therapeutic biomarker PMEPA1, CD8+ T cells, and M0 macrophages as innovative targets for effectively addressing the challenges associated with OXA resistance. Our findings hold promising implications for further clinical advancements in this field.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Masculino , Humanos , Animales , Ratones , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Neoplasias Colorrectales/metabolismo , Biomarcadores , Línea Celular Tumoral , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
5.
Int J Nanomedicine ; 19: 2507-2528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495752

RESUMEN

Background: Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods: Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results: This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion: Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Nanotecnología , Autofagia
7.
Food Funct ; 15(4): 1948-1962, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38270052

RESUMEN

Resveratrol, renowned as an antioxidant, also exhibits significant potential in combatting severe respiratory infections, particularly the respiratory syncytial virus (RSV). Nevertheless, the specific mechanism underlying its inhibition of RSV replication remains unexplored. Heparan sulfate proteoglycans (HSPGs) play a pivotal role as attachment factors for numerous viruses, offering a promising avenue for countering viral infections. Our research has unveiled that resveratrol effectively curbs RSV infection in a dose-dependent manner. Remarkably, resveratrol disrupts the early stages of RSV infection by engaging with HSPGs, rather than interacting with RSV surface proteins like fusion (F) protein and glycoprotein (G). Resveratrol's affinity appears to be predominantly directed towards the negatively charged sites on HSPGs, thus impeding the binding of viral receptors. In an in vivo study involving RSV-infected mice, resveratrol demonstrates its potential by ameliorating pulmonary pathology. This improvement is attributed to the inhibition of pro-inflammatory cytokine expression and a reduction in viral load within the lungs. Notably, resveratrol specifically alleviates inflammation characterized by an abundance of neutrophils in RSV-infected mice. In summation, our data first shows how resveratrol combats RSV infection through interactions with HSPGs, positioning it as a promising candidate for innovative drug development targeting RSV infections. Our study provides insight into the mechanism of resveratrol antiviral infection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Animales , Ratones , Virus Sincitiales Respiratorios/fisiología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/patología , Proteoglicanos de Heparán Sulfato/farmacología , Resveratrol/farmacología , Pulmón/patología
8.
J Funct Biomater ; 14(7)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37504882

RESUMEN

Drug resistance and cancer metastasis are the major obstacles for widely used platinum-based chemotherapy. It is acknowledgement that the decreasing intracellular accumulation of anticancer drugs and increasing sulfur-binding detoxification are two major mechanisms related to drug resistance. Herein, we developed a practical and straightforward method for formulating the clinically used anticancer drug satraplatin (JM-216) with D-α-tocopheryl polyethylene glycol succinate (TPGS)-based polymers to create satraplatin-loaded nanoparticles (SatPt-NPs). The experimental results demonstrate that SatPt-NPs exhibited comparable efficacy to A2780 in treating the A2780 cisplatin-resistant ovarian cancer cell line (A2780DDP), indicating their significant potential in overcoming drug resistance. Additionally, buthionine sulfoximine (BSO) is capable of depleting intracellular glutathione (GSH), resulting in reduced detoxification. After BSO treatment, the IC50 value of SatPt-NPs changed from 0.178 to 0.133 µM, which remained relatively unchanged compared to cisplatin. This suggests that SatPt-NPs can overcome drug resistance by evading GSH detoxification. Therefore, SatPt-NPs have the ability to inhibit drug resistance in tumor cells and hold tremendous potential in cancer treatment.

9.
Smart Med ; 2(4): e20230039, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39188303

RESUMEN

Nanotechnology, an emerging force, has infiltrated diverse domains like biomedical, materials, and environmental sciences. Nano-omics, an emerging fusion, combines nanotechnology with omics, boasting amplified sensitivity and resolution. This review introduces nanotechnology basics, surveys its recent strides in nano-omics, deliberates present challenges, and envisions future growth.

10.
Acta Pharm Sin B ; 12(12): 4458-4471, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36562000

RESUMEN

Pyroptosis provides a new window for relieving the tumor immunosuppressive microenvironment (TIM) and promoting systemic immune responses for tumor treatments. However, gasdermin D (GSDMD), a key protein in the pyroptosis process mediated by caspase-1, is low expressed in the majority of tumor cells and small-molecule inhibitors of DNA methylation suffer from nonspecific or single-function defects. To address these issues, hexahistidine (His6)-metal assembly (HmA) was employed as the drug delivery vector to load nigericin (Nig) and decitabine (DAC) affording a dual-drug delivery system (Nig + DAC)@HmA. The (Nig + DAC)@HmA nanoparticles are efficiently internalized by cells through endocytosis, easily escape from the lysosome, and are highly distributed in the tumor sites. DAC up-regulates the expression of GSDMD which is then cleaved by the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and caspase-1 protein activated by Nig. Effective cancer cell pyroptosis is thus achieved and induces a significant systemic antitumor immunity for impressive tumor suppression with negligible side effects in vivo. Our results suggest that such an easy-to-manipulate self-assembled nano-system (Nig + DAC)@HmA provides a new anticancer path by enhancing pyroptosis through reinforced inflammation.

11.
Cells ; 11(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35954204

RESUMEN

Non-small-cell lung cancer (NSCLC) is one of the most fatal malignant tumors harmful to human health. Previous studies report that Platycodin D (PD) exhibits anti-tumor effects in multiple human cancers, including NSCLC, but the underlying mechanisms are largely unknown. Accumulating evidence indicates that non-coding RNAs (ncRNAs) participate in NSCLC disease progression, but the link between PD and the ncRNAs in NSCLC is poorly elucidated. Here, we used whole transcriptome sequencing to systematically investigate the RNAs-associated regulatory network in the PD treating NSCLC cell lines. A total of 942 significantly dysregulated RNAs were obtained. Among those, five circRNAs and six IncRNAs were rigorously selected via database and in vitro validation. In addition, the functional enrichment study of differentially expressed mRNAs, single nucleotide polymorphisms (SNPs) within PD-related mRNA structures, and the interaction between PD and mRNA-related proteins were analyzed through gene set enrichment analysis (GSEA), structural variant analysis, and molecular docking, respectively. With further in vitro validation, the results show that PD inhibits cell proliferation, arrests the cell cycle, and induces cell apoptosis through targeting BCL2-related proteins. We hope these data can provide a full concept of PD-related molecular changes, leading to a new treatment for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , ARN/metabolismo , ARN Mensajero/genética , ARN no Traducido , Saponinas , Transcriptoma/genética , Triterpenos
12.
J Nanobiotechnology ; 20(1): 329, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842642

RESUMEN

Photodynamic therapy (PDT) has emerged as an attractive therapeutic approach which can elicit immunogenic cell death (ICD). However, current ICD inducers are still very limited as the representative ICD induces of photosensitizers can only evoke insufficient ICD to achieve unsatisfactory cancer immunotherapy. Herein, we demonstrated the use of a triple action cationic porphyrin-cisplatin conjugate (Pt-1) for drug delivery by a reactive oxygen species (ROS) sensitive polymer as nanoparticles (NP@Pt-1) for combined chemotherapy, PDT and immunotherapy. This unique triple action Pt-1 contains both chemotherapeutic Pt drugs and Porphyrin as a photosensitizer to generate ROS for PDT. Moreover, the ROS generated by Pt-1 can on the one hand degrade polymer carriers to release Pt-1 for chemotherapy and PDT. On the other hand, the ROS generated by Pt-1 subsequently triggered the ICD cascade for immunotherapy. Taken together, we demonstrated that NP@Pt-1 were the most effective and worked in a triple way. This study could provide us with new insight into the development of nanomedicine for chemotherapy, PDT as well as cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Línea Celular Tumoral , Cisplatino/farmacología , Muerte Celular Inmunogénica , Inmunoterapia , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Polímeros , Porfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
13.
Biosaf Health ; 4(2): 61-63, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35287303
15.
J Nanobiotechnology ; 19(1): 375, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794446

RESUMEN

BACKGROUND: Mild-temperature photothermal therapy (mild-PTT) has emerged as a highly promising antitumor strategy by triggering immunogenic cell death (ICD) to elicit both innate and adaptive immune responses for tumor control. However, mild-PTT still leads to the risk of tumor recurrence or metastasis because it could hardly completely eradicate tumors due to its impaired immunological efficacy owing to the enhanced PD-L1 expression in tumor cells after treatment. RESULTS: In this study, we described a hydrogen peroxide (H2O2) responsive manganese dioxide mineralized albumin nanocomposite loading with mitochondria function inhibitor phenformin (PM) and near-infrared photothermal dye indocyanine green (ICG) by modified two-step biomineralization method. In combination with ICG induced mild-PTT and PM mediated mitochondria dysfunction, PD-L1 expression was obviously down-regulated and the generated immunological responses was able to effectively attack the remaining tumor cells. Meanwhile, the risk of tumor metastasis was effectively inhibited by reducing the expression of tumor invasion-related signal molecules (TGF-ß and vimentin) after combining treatment. CONCLUSION: Such a strategy offers novel insight into the development of nanomedicine for mild-PTT as well as cancer immunotherapy, which can provide protection against tumor relapse post elimination of their initial and metastatic tumors.


Asunto(s)
Antígeno B7-H1 , Mitocondrias/efectos de los fármacos , Nanopartículas/química , Fenformina , Terapia Fototérmica , Albúminas/química , Animales , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomineralización/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Peróxido de Hidrógeno , Verde de Indocianina , Compuestos de Manganeso , Ratones , Óxidos , Fenformina/química , Fenformina/farmacología
16.
Nanomedicine ; 37: 102417, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171469

RESUMEN

Hypertension is a chronic condition that requires lifelong therapeutic management. Strict adherence to drug administration timing improves efficacy, while poor adherence leads to safety concerns. In light of these challenges, we present a nanofluidic technology that enables long-acting drug delivery with tunable timing of drug administration using buried gate electrodes in nanochannels. We developed a poly(ethylene glycol) methyl ether-block-poly(ε-caprolactone) (PEG-PCL)-based micellar formulation of amlodipine besylate, a calcium channel blocker for hypertension treatment. The electrostatically charged PEG-PCL micellar formulation enhanced drug solubility and rendered amlodipine responsive to electrostatic release gating in nanochannels for sustained release at clinically relevant therapeutic dose. Using a low-power (<3 VDC) gating potential, we demonstrated tunable release of amlodipine-loaded micelles. Additionally, we showed that the released drug maintained biological activity via calcium ion blockade in vitro. This study represents a proof of concept for the potential applicability of our strategy for chronotherapeutic management of hypertension.


Asunto(s)
Amlodipino/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Hipertensión/tratamiento farmacológico , Amlodipino/química , Animales , Bloqueadores de los Canales de Calcio/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Enfermedad Crónica/tratamiento farmacológico , Liberación de Fármacos , Humanos , Hipertensión/patología , Ratones , Micelas , Miocitos Cardíacos/efectos de los fármacos , Poliésteres/química , Polietilenglicoles/química
18.
RSC Adv ; 10(51): 30840-30847, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516029

RESUMEN

The design of plasmonic nanostructures could have many exciting applications since it enhances or provides valuable control over efficient energy conversion. A three-dimensional (3D) space is a realistic hotspot matrix harvesting a wide conversion that has been shown in zero-dimensional nanoparticles, one-dimensional linear structures, or two-dimensional films. A novel 3D plasmonic nanostructure platform consisting of plasmonic metal nanoparticles in discoidal porous silicon particles is used in this study. Plasmonic gold nanoparticles are anchored inside the discoidal porous silicon (DPS) particles by in situ reduction synthesis. The novel plasmonic nanostructures can tailor the plasmon band and overcome the instability of photothermal materials. The "trapping well" for the anchored nanoparticles in 3D space can result in a huge change of plasmonic band of metal nanoparticles to the near-IR region in a novel 3D geometry. A multifunctional scaffold, Au-DPS particle, composed of doxorubicin conjugated to poly-(l-glutamic acid) (pDOX), was developed for combinatorial chemo-photothermal cancer therapy. The therapeutic efficacy was examined in treatment of the A549 cell line under near-IR laser irradiation. The highly efficient photothermal conversion can also be demonstrated in the laser desorption/ionization time-of-flight mass spectrometry detection analysis. The limit of detection was obviously improved in the detection of angiotensin II, P14R, and ACTH fragments 18-39 peptides. Overall, we envision that Au-DPS particles may be used in ultrasensitive theranostics in the future.

19.
Mikrochim Acta ; 187(1): 72, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31858252

RESUMEN

A tapered single-mode coreless single-mode (SCS) structure with high sensitivity for sensing refractive index is described. In order to achieve high specificity of optical biosensors, here enzyme capsulation film was achieved by embedding urease in zeolitic imidazolate framework (ZIF-8/urease) through in situ growth approach on the coreless fibers. Determination of urea is achieved through online monitoring of its binding to the urease in zeolitic imidazolate framework. Refractive index change result in wavelength shifts of the optical fiber biosensor. The resonance wavelength exhibits a good linear relationship with urea concentration in the range of 1 to 10 mM with detection limit of 0.1 mM and sensitivity of 0.8 mM/RIU (refractive index unit) if operated with broadband light ranging from 1525 nm to 1590 nm. Final assessment of optical biosensor in real sample was performed where excellent performance in terms of sensitivity and selectivity was observed. Schematic representation of experimental setup and mechanism for urea detection. A tapered single-mode coreless single-mode (SCS) structure is placed between a broadband light source ranging (BBS) and optical spectrum analyzer (OSA). ZIF-8/urease composites are applied as a recognition layer for urea detection.


Asunto(s)
Técnicas Biosensibles , Enzimas Inmovilizadas/química , Estructuras Metalorgánicas/química , Urea/análisis , Ureasa/química , Zeolitas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/metabolismo , Fibras Ópticas , Tamaño de la Partícula , Propiedades de Superficie , Urea/metabolismo , Ureasa/metabolismo , Zeolitas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA