Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(39): 27070-27079, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39288446

RESUMEN

Asymmetric decarboxylative cross-couplings of carboxylic acids are powerful methods for synthesizing chiral building blocks essential in medicinal chemistry and material science. Despite their potential, creating versatile chiral alkylboron derivatives through asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling from readily available primary aliphatic acids and mild organometallic reagents remains challenging. In this study, we present a visible light-induced Ni-catalyzed enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated primary aliphatic acid NHPI esters with gem-borazirconocene alkanes, producing a diverse array of valuable chiral alkylboron building blocks. The method boasts a broad substrate scope, high functional group tolerance, and the ability for late-stage modification of complex drug molecules and natural products with high enantioselectivity, showcasing its synthetic potential. Mechanistic investigations suggest a nickel-catalyzed enantioconvergent radical cross-coupling pathway, wherein the primary radical from a redox-active ester is generated through single-electron reduction with ZrIII species. This represents an unprecedented example of enantioselective radical C(sp3)-C(sp3) cross-coupling in the absence of photocatalysts.

2.
Org Lett ; 26(35): 7382-7386, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39177205

RESUMEN

The decarboxylation of naturally abundant amino acids, followed by subsequent inter- or intramolecular reaction cascades, enables the rapid synthesis of a variety of diverse and high-value amine derivatives. Previous methods have relied heavily on transition metals, involved tedious procedures, or required harsh conditions. Herein, we present a novel reaction cascade for the decarboxylation and nucleophilic functionalization of α-amino acids. This method is characterized by being transition-metal-free, convenient to operate, environmentally friendly and having mild conditions.

3.
Protein Cell ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676703

RESUMEN

Caspase-2, a highly conserved member of the caspase family, is considered an initiator caspase that triggers apoptosis in response to some cellular stresses. Previous studies suggest that an intracellular multi-protein complex PIDDosome, induced by genotoxic stress, serves as a platform for caspase-2 activation. However, due to caspase-2's inability to process effector caspases, the mechanism underlying caspase-2-mediated cell death upon PIDDosome activation remains unclear. Here we conducted an unbiased genome-wide genetic screen and identified that the Bcl2 family protein BID is required for PIDDosome-induced, caspase-2-mediated apoptosis. PIDDosome-activated caspase-2 directly and functionally processes BID to signal the mitochondrial pathway for apoptosis induction. Additionally, a designed chemical screen identified a compound, HUHS015, that specifically activates caspase-2-mediated apoptosis. HUHS015-stimulated apoptosis also requires BID but is independent of the PIDDosome. Through extensive structure-activity relationship efforts, we identified a derivative with a potency of ~ 60 nmol/L in activating caspase-2-mediated apoptosis. The HUHS015-series of compounds act as efficient agonists that directly target the interdomain linker in caspase-2, representing a new mode of initiator caspase activation. Human and mouse caspase-2 differ in two crucial residues in the linker, rendering a selectivity of the agonists for human caspase-2. The caspase-2 agonists are valuable tools to explore the physiological roles of caspase-2-mediated cell death and a base for developing small-molecule drugs for relevant diseases.

4.
Chem Commun (Camb) ; 60(28): 3842-3845, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38497323

RESUMEN

The tetracyclic rings with chiral quaternary center represent a formidable synthetic challenge for Erythrina alkaloids. We present a 6-step synthesis of the Erythrina alkaloid 3-demethoxyerythratidinone with a 16% overall yield. Our synthesis highlights a cascade reaction initiated by Tf2O-induced activation of an enaminone substrate, yielding an iminium species and an enol triflate, followed by a Pictet-Spengler reaction. This method efficiently constructs the tetracyclic core skeleton, featuring an N-substituted quaternary center. It exhibits versatility across diverse (hetero)arenes and enaminone structures, providing a general strategy for the rapid synthesis of fused or spiro ring systems including the core structure of homoerythrina alkaloids.

5.
Nat Commun ; 15(1): 679, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263179

RESUMEN

Tetrodotoxin and congeners are specific voltage-gated sodium channel blockers that exhibit remarkable anesthetic and analgesic effects. Here, we present a scalable asymmetric syntheses of Tetrodotoxin and 9-epiTetrodotoxin from the abundant chemical feedstock furfuryl alcohol. The optically pure cyclohexane skeleton is assembled via a stereoselective Diels-Alder reaction. The dense heteroatom substituents are established sequentially by a series of functional group interconversions on highly oxygenated cyclohexane frameworks, including a chemoselective cyclic anhydride opening, and a decarboxylative hydroxylation. An innovative SmI2-mediated concurrent fragmentation, an oxo-bridge ring opening and ester reduction followed by an Upjohn dihydroxylation deliver the highly oxidized skeleton. Ruthenium-catalyzed oxidative alkyne cleavage and formation of the hemiaminal and orthoester under acidic conditions enable the rapid assembly of Tetrodotoxin, anhydro-Tetrodotoxin, 9-epiTetrodotoxin, and 9-epi lactone-Tetrodotoxin.


Asunto(s)
Ciclohexanos , Estrés Oxidativo , Tetrodotoxina , Hidroxilación , Radiofármacos
6.
Org Lett ; 26(4): 824-828, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38237069

RESUMEN

Skeleton rearrangement could rapidly transfer simple molecules to complex structures and has significant potential in the total synthesis of natural products. We developed a one-pot reaction cascade of double oxidative rearrangement of furan and indole followed by a nucleophilic cyclization that was successfully applied for the formal synthesis of rhynchophylline/isorhynchophylline and the first total synthesis of (±)-7(R)-geissoschizol oxindole/(±)-7(S)-geissoschizol oxindole. In addition, the geissoschizol oxindoles were revised to their C3 epimers, and the mechanism for the reversed stereochemistry through the retro-Mannich/Mannich cascade was proposed and supported by density functional theory calculations.

8.
Angew Chem Int Ed Engl ; 62(28): e202304435, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37160737

RESUMEN

Sarpagine alkaloids are bioactive indole natural products that contain a highly rigid indole-fused 1-azabicyclo[2.2.2]octane, more than 100 members of which have been identified. Herein, a detailed examination of the intramolecular oxidative coupling between a ketone and a Weinreb amide for assembling the complex 1-azabicyclo[2.2.2]octane core structure of sarpagine family alkaloids is described. Precise late-stage manipulations of the ketone and Weinreb amide enable the divergent syntheses of (-)-trinervine, (+)-vellosimine, (+)-normacusine B, and (-)-alstomutinine C. Other notable transformations of the synthesis featured an aza-Achmatowicz/indole cyclization cascade to generate the azabicyclo[3.3.1]nonane structure, a regioselective elimination reaction to form the ethylidene motif embedded in the (+)-vellosimine and (+)-normacusine B structures, and a diastereoselective indole oxidative rearrangement to form the spirooxindole structure in (-)-alstomutinine C.


Asunto(s)
Alcaloides , Octanos , Acoplamiento Oxidativo , Estereoisomerismo , Alcaloides Indólicos/química , Alcaloides/química
9.
Cell Chem Biol ; 30(3): 278-294.e11, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36827981

RESUMEN

Mitochondrial fission is critical for mitochondrial dynamics and homeostasis. The dynamin superfamily GTPase DRP1 is recruited by three functionally redundant receptors, MFF, MiD49, and MiD51, to mitochondria to drive fission. Here, we exploit high-content live-cell imaging to screen for mitochondrial fission inhibitors and have developed a covalent compound, mitochondrial division inhibitor (MIDI). MIDI treatment potently blocks mitochondrial fragmentation induced by mitochondrial toxins and restores mitochondrial morphology in fusion-defective cells carrying pathogenic mitofusin and OPA1 mutations. Mechanistically, MIDI does not affect DRP1 tetramerization nor DRP1 GTPase activity but does block DRP1 recruitment to mitochondria. Subsequent biochemical and cellular characterizations reveal an unexpected mechanism that MIDI targets DRP1 interaction with multiple receptors via covalent interaction with DRP1-C367. Taken together, beyond developing a potent mitochondrial fission inhibitor that profoundly impacts mitochondrial morphogenesis, our study establishes proof of concept for developing protein-protein interaction inhibitors targeting DRP1.


Asunto(s)
Dinaminas , Dinámicas Mitocondriales , Dinaminas/genética , Dinaminas/química , Mitocondrias , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/química
10.
Innovation (Camb) ; 3(5): 100294, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36032196
11.
Anal Chem ; 94(16): 6242-6250, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35403420

RESUMEN

Most LC-MS based bile acid analyses target common bile acids. The identification of unknown bile acids remains challenging in untargeted experiments. Here, a software named BAFinder was developed to improve the identification of unknown bile acids from accurate mass LC-MS/MS data in both the positive and negative ESI modes. A wide variety of bile acid structures were covered in BAFinder, including oxidized bile acids and sugar conjugates that were often ignored. The annotation of unknown bile acids was based on a thorough investigation of MS/MS fragmentation patterns of 84 bile acid reference standards in both modes. Specifically, BAFinder took the peak alignment result and MS/MS spectra, grouped candidate features in positive and negative modes, searched their representative MS/MS spectra against a MS/MS library, and used characteristic product ions and neutral losses to annotate bile acids not covered in the library. Finally, the number of hydroxyl groups and double bonds, conjugation, and isomer information of bile acids were reported with four different levels of annotation confidence. The use of BAFinder was demonstrated through successful application to the analysis of human plasma and urine samples, in which a total of 112 and 244 bile acids were annotated and 75 and 111 of them were confirmed with standards or synthesized compounds, respectively. The software is freely available at https://bafinder.github.io/.


Asunto(s)
Ácidos y Sales Biliares , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Isomerismo , Programas Informáticos
12.
J Org Chem ; 87(8): 5199-5212, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35275636

RESUMEN

The complex structures and important biological functions of Strychnos alkaloids have attracted a great deal of attention from synthetic chemists. Herein, we describe the concise asymmetric total syntheses of the Strychnos alkaloids, (-)-dehydrotubifoline, (-)-tubifoline, and (-)-tubifolidine, as well as the formal total synthesis of (-)-strychnine. Our strategy features the construction of the common tetracyclic pyrrolo[2,3-d]carbazole structure using regioselective Fischer indolization on unsymmetrical cyclic ketones and late-stage functionalization for divergent synthesis. We developed a stepwise Fischer indolization featuring selective formation of enol triflate to solve the challenging regioselectivity problem, leading to the common tetracyclic ring skeleton in these Strychnos alkaloids. The regioselectivity of Fischer indolization on unsymmetrical cyclic ketones was studied on the basis of different types of ring systems and supported by density functional theory calculations. Overall, our success in the construction of this tetracyclic ring secured the syntheses of Strychnos alkaloids and may provide a general method for the total syntheses of various alkaloids containing this skeleton.


Asunto(s)
Alcaloides , Strychnos , Alcaloides/química , Cetonas , Estricnina/química , Strychnos/química
13.
J Am Chem Soc ; 144(9): 4269-4276, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35192348

RESUMEN

The [1,2]-Meisenheimer rearrangement is well known as the [1,2]-migration of an O-substituted hydroxylamine from a tertiary amine N-oxide, and it is frequently employed in organic synthesis to enforce adjacent carbon oxidation or install a 1,2-oxazine core, which is a prevalent structural feature and pharmacophore of many bioactive natural products. Although the [1,2]-Meisenheimer rearrangement was proposed to occur in the biosynthesis of a number of 1,2-oxazine-containing natural products, it has never been proved biosynthetically. Here, we identified the biosynthetic gene cluster of an insecticidal natural product, paeciloxazine (1), from Penicillium janthinellum and characterized a flavin-dependent monooxygenase, PaxA, as the first example that mediates the formation of a 1,2-oxazine moiety via Meisenheimer rearrangement. In vitro biochemical assays, site-directed mutations, docking and molecular dynamics simulations, and density functional theory calculations support the mechanism that PaxA first catalyzes N-oxidation to form an N-oxide intermediate, which undergoes [1,2]-Meisenheimer rearrangement with the assistance of an amino acid with proton transfer property. This study expands the repertoire of rearrangement reactions during the biosynthesis of natural products and provides a new strategy for discovering natural products with N-O tethers by genome mining.


Asunto(s)
Productos Biológicos , Oxigenasas de Función Mixta , Dinitrocresoles , Flavinas/metabolismo , Oxigenasas de Función Mixta/química , Compuestos Orgánicos , Oxazinas , Óxidos
14.
Angew Chem Int Ed Engl ; 61(6): e202115611, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904339

RESUMEN

A metal- and oxidant-free, practical and efficient method for the synthesis of highly versatile and synthetically useful ortho-trifluoromethanesulfonylated anilines from arylhydroxylamines and trifluoromethanesulfinic chloride was developed. This rapid transformation proceeded smoothly with good yields and excellent ortho-selectivity in the absence of any metals or ligands. Mechanistically, the reaction comprised a noncanonical O-trifluoromethanesulfinylation of the arylhydroxylamine, and the subsequent [2,3]-sigmatropic rearrangement to afford ortho-trifluoromethanesulfonylated aniline derivatives. The practical application of this reaction was demonstrated by further conversion into a series of functional molecules under different reaction conditions.

15.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849776

RESUMEN

Conditional degron technologies, which allow a protein of interest to be degraded in an inducible manner, are important tools for biological research, and are especially useful for creating conditional loss-of-function mutants of essential genes. The auxin-inducible degron (AID) technology, which utilizes plant auxin signaling components to control protein degradation in nonplant species, is a widely used small-molecular-controlled degradation method in yeasts and animals. However, the currently available AID systems still have room for further optimization. Here, we have improved the AID system for the fission yeast Schizosaccharomyces pombe by optimizing all three components: the AID degron, the small-molecule inducer, and the inducer-responsive F-box protein. We chose a 36-amino-acid sequence of the Arabidopsis IAA17 protein as the degron and employed three tandem copies of it to enhance efficiency. To minimize undesirable side effects of the inducer, we adopted a bulky analog of auxin, 5-adamantyl-IAA, and paired it with the F-box protein OsTIR1 that harbors a mutation (F74A) at the auxin-binding pocket. 5-adamantyl-IAA, when utilized with OsTIR1-F74A, is effective at concentrations thousands of times lower than auxin used in combination with wild-type OsTIR1. We tested our improved AID system on 10 essential genes and achieved inducible lethality for all of them, including ones that could not be effectively inactivated using a previously published AID system. Our improved AID system should facilitate the construction of conditional loss-of-function mutants in fission yeast.


Asunto(s)
Proteínas F-Box , Schizosaccharomyces , Animales , Proteínas F-Box/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación , Proteolisis , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
16.
Nat Commun ; 12(1): 6204, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707099

RESUMEN

Molecular glues are a class of small molecular drugs that mediate protein-protein interactions, that induce either the degradation or stabilization of target protein. A structurally diverse group of chemicals, including 17-ß-estradiol (E2), anagrelide, nauclefine, and DNMDP, induces apoptosis by forming complexes with phosphodiesterase 3A (PDE3A) and Schlafen 12 protein (SLFN12). They do so by binding to the PDE3A enzymatic pocket that allows the compound-bound PDE3A to recruit and stabilize SLFN12, which in turn blocks protein translation, leading to apoptosis. In this work, we report the high-resolution cryo-electron microscopy structure of PDE3A-SLFN12 complexes isolated from cultured HeLa cells pre-treated with either anagrelide, or nauclefine, or DNMDP. The PDE3A-SLFN12 complexes exhibit a butterfly-like shape, forming a heterotetramer with these small molecules, which are packed in a shallow pocket in the catalytic domain of PDE3A. The resulting small molecule-modified interface binds to the short helix (E552-I558) of SLFN12 through hydrophobic interactions, thus "gluing" the two proteins together. Based on the complex structure, we designed and synthesized analogs of anagrelide, a known drug used for the treatment of thrombocytosis, to enhance their interactions with SLFN12, and achieved superior efficacy in inducing apoptosis in cultured cells as well as in tumor xenografts.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/química , Diseño de Fármacos , Péptidos y Proteínas de Señalización Intracelular/química , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Sitios de Unión , Microscopía por Crioelectrón , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/química , Ratones , Complejos Multiproteicos , Naftiridinas/química , Piridazinas/química , Quinazolinas/química , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nature ; 599(7884): 290-295, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34671164

RESUMEN

Mouse caspase-11 and human caspase-4 and caspase-5 recognize cytosolic lipopolysaccharide (LPS) to induce pyroptosis by cleaving the pore-forming protein GSDMD1-5. This non-canonical inflammasome defends against Gram-negative bacteria6,7. Shigella flexneri, which causes bacillary dysentery, lives freely within the host cytosol where these caspases reside. However, the role of caspase-11-mediated pyroptosis in S. flexneri infection is unknown. Here we show that caspase-11 did not protect mice from S. flexneri infection, in contrast to infection with another cytosolic bacterium, Burkholderia thailandensis8. S. flexneri evaded pyroptosis mediated by caspase-11 or caspase 4 (hereafter referred to as caspase-11/4) using a type III secretion system (T3SS) effector, OspC3. OspC3, but not its paralogues OspC1 and 2, covalently modified caspase-11/4; although it used the NAD+ donor, this modification was not ADP-ribosylation. Biochemical dissections uncovered an ADP-riboxanation modification on Arg314 and Arg310 in caspase-4 and caspase-11, respectively. The enzymatic activity was shared by OspC1 and 2, whose ankyrin-repeat domains, unlike that of OspC3, could not recognize caspase-11/4. ADP-riboxanation of the arginine blocked autoprocessing of caspase-4/11 as well as their recognition and cleavage of GSDMD. ADP-riboxanation of caspase-11 paralysed pyroptosis-mediated defence in Shigella-infected mice and mutation of ospC3 stimulated caspase-11- and GSDMD-dependent anti-Shigella humoral immunity, generating a vaccine-like protective effect. Our study establishes ADP-riboxanation of arginine as a bacterial virulence mechanism that prevents LPS-induced pyroptosis.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Caspasas Iniciadoras/metabolismo , Evasión Inmune , Piroptosis , Shigella flexneri/patogenicidad , Adenosina Difosfato/metabolismo , Animales , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Femenino , Inmunidad Humoral , Inflamasomas/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , NAD/metabolismo , Piroptosis/efectos de los fármacos , Vacunas contra la Shigella , Shigella flexneri/inmunología , Virulencia
18.
Nat Metab ; 3(10): 1400-1414, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34663975

RESUMEN

5-diphosphoinositol pentakisphosphate (5-IP7) is a signalling metabolite linked to various cellular processes. How extracellular stimuli elicit 5-IP7 signalling remains unclear. Here we show that 5-IP7 in ß cells mediates parasympathetic stimulation of synaptotagmin-7 (Syt7)-dependent insulin release. Mechanistically, vagal stimulation and activation of muscarinic acetylcholine receptors triggers Gαq-PLC-PKC-PKD-dependent signalling and activates IP6K1, the 5-IP7 synthase. Whereas both 5-IP7 and its precursor IP6 compete with PIP2 for binding to Syt7, Ca2+ selectively binds 5-IP7 with high affinity, freeing Syt7 to enable fusion of insulin-containing vesicles with the cell membrane. ß-cell-specific IP6K1 deletion diminishes insulin secretion and glucose clearance elicited by muscarinic stimulation, whereas mice carrying a phosphorylation-mimicking, hyperactive IP6K1 mutant display augmented insulin release, congenital hyperinsulinaemia and obesity. These phenotypes are absent in mice lacking Syt7. Our study proposes a new conceptual framework for inositol pyrophosphate physiology in which 5-IP7 acts as a GPCR second messenger at the interface between peripheral nervous system and metabolic organs, transmitting Gq-coupled GPCR stimulation to unclamp Syt7-dependent, and perhaps other, exocytotic events.


Asunto(s)
Exocitosis , Fosfatos de Inositol/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinaptotagminas/metabolismo , Animales , Ratones , Fosforilación , Transducción de Señal
19.
Nat Commun ; 12(1): 4409, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285209

RESUMEN

Appetitive locomotion is essential for animals to approach rewards, such as food and prey. The neuronal circuitry controlling appetitive locomotion is unclear. In a goal-directed behavior-predatory hunting, we show an excitatory brain circuit from the superior colliculus (SC) to the substantia nigra pars compacta (SNc) to enhance appetitive locomotion in mice. This tectonigral pathway transmits locomotion-speed signals to dopamine neurons and triggers dopamine release in the dorsal striatum. Synaptic inactivation of this pathway impairs appetitive locomotion but not defensive locomotion. Conversely, activation of this pathway increases the speed and frequency of approach during predatory hunting, an effect that depends on the activities of SNc dopamine neurons. Together, these data reveal that the SC regulates locomotion-speed signals to SNc dopamine neurons to enhance appetitive locomotion in mice.


Asunto(s)
Conducta Apetitiva/fisiología , Locomoción/fisiología , Porción Compacta de la Sustancia Negra/fisiología , Conducta Predatoria/fisiología , Colículos Superiores/fisiología , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Vías Nerviosas/fisiología , Porción Compacta de la Sustancia Negra/citología , Técnicas Estereotáxicas , Colículos Superiores/citología , Transmisión Sináptica/fisiología
20.
J Med Chem ; 64(9): 5973-6007, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33906348

RESUMEN

Dimeric bile acid derivatives (DBADs) were developed and tested for their anti-HBV and anti-HDV activities as sodium taurocholate cotransporting polypeptide (NTCP) inhibitors. DBADs exhibited strong and persistent potency of NTCP inhibition, whereas diverse linkers and constitutions showed distinct inhibition features. Motif aa157-165 on NTCP was shown to be a possible binding site of DBADs; therefore, we determined DBADs' selectivity among NTCPs from different species. A cyclized DBAD scaffold DBA-41 exhibited a high affinity to human NTCP (hNTCP). Intraperitoneal administration of DBA-41 to hNTCP-tg mice induced serum total bile acid elevation. DBA-41 may serve as a biological tool to study NTCP physiological function.


Asunto(s)
Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/farmacología , Dimerización , Diseño de Fármacos , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Simportadores/antagonistas & inhibidores , Animales , Ácidos y Sales Biliares/sangre , Humanos , Ratones , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA