Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
J Agric Food Chem ; 72(9): 4574-4586, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38385335

Extensive research has been conducted on Camellia oleifera Abel., a cultivar predominantly distributed in China, to investigate its phytochemical composition, owning to its potential as an edible oil crop. Pentacyclic triterpene saponins, as essential active constituents, play a significant role in contributing to the pharmacological effects of this cultivar. The saponins derived from C. oleifera (CoS) offer a diverse array of bioactivity benefits, including antineoplastic/bactericidal/inflammatory properties, cardiovascular protection, neuroprotection, as well as hypoglycemic and hypolipidemic effects. This review presents a comprehensive analysis of the isolation and pharmacological properties of CoS. Specially, we attempt to reveal the antitumor structure-activity relationship (SAR) of CoS-derived triterpenoids. The active substitution sites of CoS, namely, C-3, C-15, C-16, C-21, C-22, C-23, and C-28 pentacyclic triterpenoids, make it a unique and highly valuable substance with significant medicinal and culinary applications. As such, CoS can play a critical role in transforming people's lives, providing unique medicinal benefits, and contributing to the advancement of both medicine and cuisine.


Camellia , Saponins , Triterpenes , Humans , Triterpenes/chemistry , Camellia/chemistry , Structure-Activity Relationship , Seeds/chemistry , Saponins/pharmacology , Saponins/chemistry
2.
J Pharm Biomed Anal ; 242: 116066, 2024 May 15.
Article En | MEDLINE | ID: mdl-38417325

Toxicodendron vernicifluum bark has been used for many years as a component in foods and as a traditional herbal medication. Unfortunately, the presence of urushiols, which induce allergies, limits its application. This study used a vortex-blending matrix solid-phase dispersion microextraction technique to extract urushiols from Toxicodendron vernicifluum bark. HPLC was used to evaluate the amounts of the extracted urushiols (15:0, 15:1, 15:2, and 15:3). The modified magnetic adsorbent was prepared through an in situ coprecipitation method and characterized using a variety of techniques. The optimized extraction conditions are as follows: using magnetic Zeolite Socony Mobil-Five as an adsorbent, a 1:2 sample/adsorbent ratio, 2.5 min of vortex-blending time, 4 mL of 0.1% (V/V) trifluoroacetic acid-methanol as the elution solvent and 8 min of ultrasound time. There was good linearity and high repeatability in the method. Furthermore, the limits of detection for the urushiols ranged from 0.20 to 0.50 µg/mL. Under the optimized conditions, 50 compounds were identified by ultra high performance liquid chromatography and quadrupole time-of-flight mass spectrometry. These compounds included 8 phenolic acids, 9 monomeric urushiols, 11 urushiol dimers, 10 other components, and 11 flavonoids. The suggested approach, which has the advantages of few stages and high extraction efficiency over existing extraction procedures, is a potentially useful method for obtaining and evaluating urushiols in raw materials or extracts.


Toxicodendron , Chromatography, High Pressure Liquid/methods , Toxicodendron/chemistry , Plant Bark/chemistry , Catechols/analysis , Solid Phase Extraction/methods
3.
Int J Biol Macromol ; 261(Pt 2): 129857, 2024 Mar.
Article En | MEDLINE | ID: mdl-38307438

The application of CO2 supercritical fluid (SCF) technology has developed rapidly because of its non-toxic, environmentally friendly, mild reaction conditions and safety. The SCF technology can effectively speed up the reaction process of nano-material synthesis, and maintains a high degree of controllability and repeatability. This study mainly included carboxymethyl chitosan sodium salt (CCS), citral (CT), p-coumaric acid (CA), and ZnSO4 as raw materials to prepare CCS-CT-CA-Zn complex as a pH-responsive agent and was investigated using supercritical fluid technique. The coordination structure of Bridge-CCS-CT-CH3COO-CA-Zn-Schiff base/OH and the morphology of the complex agents were verified. The prepared CCS-CT-CA-Zn complex showed good dispersion and uniformity (mean size: 852 ± 202 nm, PdI: 0.301, and mean zeta potential: -31 ± 6 mV). Also, it has a good pH responsive release in an acid environment. Besides, both of CCS-CT-CA-Zn complex (DS-B) and its decomposed mixture in acid (DS-A) demonstrated significant antioxidant and anti-vibrio activity. Moreover, both DS-B complex and DS-A mixture inhibited biofilm formation, swimming, and swarming motilities of V. parahaemolyticus in a dose-dependent manner. This work will provide a scientific basis for the further design and development of natural products derived antibacterial-antioxidant complex agents, food additives and feed additives.


Acyclic Monoterpenes , Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Zinc/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogen-Ion Concentration
4.
Chem Rev ; 124(2): 248-317, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38108629

The unique physicochemical properties, flexible structural tunability, and giant chemical space of ionic liquids (ILs) provide them a great opportunity to match different target properties to work as advanced process media. The crux of the matter is how to efficiently and reliably tailor suitable ILs toward a specific application. In this regard, the computer-aided molecular design (CAMD) approach has been widely adapted to cover this family of high-profile chemicals, that is, to perform computer-aided IL design (CAILD). This review discusses the past developments that have contributed to the state-of-the-art of CAILD and provides a perspective about how future works could pursue the acceleration of the practical application of ILs. In a broad context of CAILD, key aspects related to the forward structure-property modeling and reverse molecular design of ILs are overviewed. For the former forward task, diverse IL molecular representations, modeling algorithms, as well as representative models on physical properties, thermodynamic properties, among others of ILs are introduced. For the latter reverse task, representative works formulating different molecular design scenarios are summarized. Beyond the substantial progress made, some future perspectives to move CAILD a step forward are finally provided.

5.
J Med Virol ; 95(10): e29196, 2023 10.
Article En | MEDLINE | ID: mdl-37881096

Kidney injury is common in patients with Coronavirus Disease-19 (COVID-19), which is related to poor prognosis. We aim to summarize the clinical features, athological types, and prognosis of COVID-19 associated kidney injury caused by the Omicron strain. In this study, 46 patients with Omicron-associated kidney injury were included, 38 of whom performed renal biopsy. Patients were divided into two groups: group A for patients with onset of kidney injury after SARS-CoV-2 infection; group B for patients with pre-existing kidney disease who experienced aggravation of renal insufficiency after SARS-CoV-2 infection. The clinical, pathological, and prognostic characteristics of the patients were observed. Acute kidney injury (AKI) (35%) was the most common clinical manifestation in group A. Patients in group B mainly presented with chronic kidney disease (CKD) (55%) and nephrotic syndrome (NS) (40%). The pathological type was mainly IgA nephropathy (IgAN) (39% in group A and 45% in group B). Among all of them, one case presenting with thrombotic microangiopathy had worse kidney function at biopsy time. Mean serum C3 levels were 1.2 ± 0.5 and 1.0 ± 0.2 g/L in group A and group B, respectively. In renal tissues, C3 deposits were observed in 71.1% of patients. 11.8% (n = 2) patients experienced deterioration of renal function after treatment, but no patients developed to end-stage renal disease. In our single-center study in China, the main clinical manifestations were AKI, CKD, and NS, while the main pathological type was IgAN. Compared with previous strains of SARS-CoV-2, patients with the Omicron infection had a favorable prognosis.


Acute Kidney Injury , COVID-19 , Glomerulonephritis, IGA , Renal Insufficiency, Chronic , Humans , SARS-CoV-2 , COVID-19/complications , COVID-19/pathology , Kidney/physiology , Kidney/pathology , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Renal Insufficiency, Chronic/complications , Retrospective Studies
6.
J Colloid Interface Sci ; 652(Pt B): 1099-1107, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37657210

CoO has attracted increasing attention as an electrochemical energy storage owing to its excellent redox activity and high theoretical specific capacitance. However, its low inherent electrical conductivity results in sluggish reaction kinetics, and the poor rate capability of CoO limits its widespread applications. Herein, a multiple-defect strategy of engineering oxygen vacancies and Cu-ion dopants into the low-crystalline CoO nanowires (Ov-Cu-CoO) is successfully applied. Because of the advantage of the dual defect synergetic effect, the electronic structure and charge distribution are effectively modulated, thus enhancing the electrical conductivity and enriched redox chemistry. The obtained Ov-Cu-CoO electrode exhibits a high specific capacity of 1388.6 F⋅g-1 at a current density of 1 A⋅g-1, an ultrahigh rate performance (81.2% of the capacitance retained at 20 A⋅g-1) and excellent cycling stability (101.1% after 10,000 cycles). Moreover, an asymmetric supercapacitor device with Ov-Cu-CoO as the positive electrode having a high energy density of 44.1 W⋅h⋅kg-1 at a power density of 800 W⋅kg-1, and can still remain 27.2 W⋅h⋅kg-1 at a power density of 16 kW⋅kg-1. This study demonstrates an effective strategy to enhance electrochemical performance of CoO that can be easy applied to other transition metal oxides.

7.
ACS Omega ; 8(36): 32752-32764, 2023 Sep 12.
Article En | MEDLINE | ID: mdl-37720755

Spontaneous combustion characteristics are important issues for the safe operation of the wet-modified activated carbon drying process. The spontaneous combustion characteristics of activated carbon modified via liquid phase impregnation were fully investigated in this study. The modified activated carbon was prepared using columnar activated carbon and 4-amino-1,2-butanediol solution. Physical properties and surface functional group analyses were performed for activated carbon before and after modification. The ignition temperature of activated carbon before and after modification was then characterized using the methods of GB/T20450-2006, thermogravimetry-derivative thermogravimetry (TG-DTG), and TG-mass spectrometry (TG-MS). At the same time, the activation energy of activated carbon before and after modification was calculated by using thermodynamic analysis. Furthermore, a new self-designed test platform was introduced to investigate the spontaneous combustion characteristics of wet-modified activated carbon under the drying temperatures of 150, 175, 180, and 210 °C. The results show that the specific surface area of Brunauer, Emmett, and Teller (BET) is decreased by 368 m2·g-1, the total volume of pore size is decreased by 0.17 cm3·g-1, and the content of oxygen-containing functional groups is decreased by 0.071 mmol/g compared with row activated carbon. The ignition temperatures of the sample before modification characterized by the three methods are 483, 596, and 599 °C, respectively. The ignition temperatures of the sample after modification are 489, 607, and 611 °C, respectively. The activation energy of the modified activated carbon is increased by 35 kJ/mol compared to the original activated carbon. It is concluded that the temperature that triggers the modified activated carbon combustion during the drying process is between 175 and 180 °C, and the heat is mainly gathered at the longitudinal center of the combustion chamber through the investigation of spontaneous combustion experiments. The results in this study can contribute to safe production to prevent combustion in the process of modifying activated carbon during the drying process.

8.
Chembiochem ; 24(18): e202300238, 2023 09 15.
Article En | MEDLINE | ID: mdl-37366008

In the present study, a novel series of 11 urushiol-based hydroxamic acid histone deacetylase (HDAC) inhibitors was designed, synthesized, and biologically evaluated. Compounds 1-11 exhibited good to excellent inhibitory activities against HDAC1/2/3 (IC50 : 42.09-240.17 nM) and HDAC8 (IC50 : 16.11-41.15 nM) in vitro, with negligible activity against HDAC6 (>1409.59 nM). Considering HDAC8, docking experiments revealed some important features contributing to inhibitory activity. According to Western blot analysis, select compounds could notably enhance the acetylation of histone H3 and SMC3 but not-tubulin, indicating their privileged structure is appropriate for targeting class I HDACs. Furthermore, antiproliferation assays revealed that six compounds exerted greater in vitro antiproliferative activity against four human cancer cell lines (A2780, HT-29, MDA-MB-231, and HepG2, with IC50 values ranging from 2.31-5.13 µM) than suberoylanilide hydroxamic acid; administration of these compounds induced marked apoptosis in MDA-MB-231 cells, with cell cycle arrest in the G2/M phase. Collectively, specific synthesized compounds could be further optimized and biologically explored as antitumor agents.


Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Histone Deacetylase Inhibitors/chemistry , Cell Line, Tumor , Structure-Activity Relationship , Cell Proliferation , Drug Screening Assays, Antitumor , Histone Deacetylases/metabolism , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Repressor Proteins/metabolism
9.
Angew Chem Int Ed Engl ; 62(27): e202304413, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37160619

Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2 O2 ) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e- oxygen reduction to H2 O, is essential for highly selective H2 O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2 O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2 O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e- ORR and achieving over 90 % selectivity of H2 O2 . This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.

10.
Food Chem ; 407: 135122, 2023 May 01.
Article En | MEDLINE | ID: mdl-36493483

In this study, Toxicodendron vernicifluum fisetin chelated silver nanoparticles (FT-AgNPs) with outstanding antioxidant and antimicrobial activities were constructed via self-assembly. To surprise, 0.6 wt% FT-AgNPs was compatibly dispersed into the 1:1 chitosan/pullulan (CS/PUL, CP) matrix. The hydrogen bonding and electrostatic interaction between FT-AgNPs and CP, slightly increased the CP thermal stability, and greatly enhanced the tensile strength to 61.2 MPa, water vapor permeability below 20 kg/m2•d. Furthermore, after treated with the composite hydrocolloid film (FT-AgNPs/CP), the reactive oxygen species level of the treated Aspergillus niger cells was significantly increased, and the membrane permeability was enhanced. It effectively slowed down the decay of litchi fruit induced by microbial infection under the storage at 25 °C (15 d of the 0.6 % FT-AgNPs/CP treatment vs 9 d of the control). In addition, 0.024 µg/kg Ag+ residual in lichi pulp verified the qualified safety of the application of the 0.6 % FT-AgNPs/CP.


Chitosan , Litchi , Metal Nanoparticles , Fruit , Silver/pharmacology , Anti-Bacterial Agents/pharmacology
11.
Molecules ; 27(21)2022 Oct 25.
Article En | MEDLINE | ID: mdl-36364073

Zirconium-based metal-organic frameworks (MOFs) have attracted extensive attention owing to their robust stability and facile functionalization. However, they are generally prepared in common volatile solvents within a long reaction time. Here, we introduced environmentally friendly, cheap, and acid-based tunable deep eutectic solvents (DESs) formed from 2-methyl imidazole (MIm) and p-toluenesulfonic acid (PTSA) which significantly accelerated the assembly of zirconium-based MOF (UiO-66) without any aggressive additives. PTSA in acidic DES and ZrOCl2 preliminarily formed Zr(IV) oxo organic acid framework, whereas basic DES completely dissolved the ligand of UiO-66. The strong hydrogen bond effect of PTSA and MIm efficiently accelerated the linker exchange between zirconium oxo organic coordination in acidic DES and benzenedicarboxylate linker in weak basic DES within a reaction time of 2 h at 50 °C. Thus, UiO-66 was quickly assembled with small particle sizes and used as an excellent catalyst for the acetalization of benzaldehyde and methanol. Therefore, the developed synthesis approach provides a new green strategy to quickly prepare and design various structures of metal-based compounds under mild reaction conditions.

12.
Sci Total Environ ; 846: 157415, 2022 Nov 10.
Article En | MEDLINE | ID: mdl-35850341

Soil organic matter (SOM) is considered as a pivotal factor influencing the adsorption of pollutants. However, few prior quantitative investigations of the SOM functional group distribution to the contaminants' fate have been conducted. In this paper, the SOM cluster method based on COSMO-RS theory has been conducted to illustrate the chemical composition variables of SOM that affect the polycyclic aromatic hydrocarbons (PAHs) fate in quantitative terms. In the theoretical simulations, the contributions of carbonyl, carboxyl, aromatic, oxyalkyl and aliphatic groups in SOM to phenanthrene (Phe) and pyrene (Pyr) adsorption are evaluated by calculating the partition coefficients (LogP). The results show that the increase in oxyalkyl content leads to a decrease in LogP. Inversely, carbonyl and carboxyl groups of SOMs positively associated with Phe adsorption. The changes in aromatic and alkyl components have a similar magnitude of influence on LogP. Moreover, the effect of non-carbon-based functional groups in SOM on the Phe partitioning has been examined for the first time. The increase of sulfur and nitrogen content in SOM hinder Phe adsorption, while the rise of phosphorus content promotes the adsorption. In soil adsorption experiments, four natural soils, characterized by X-ray photoelectron spectroscopy (XPS) and Diffuse reflectance infrared Fourier transform (DRIFT), are selected to verify the influence of SOM functional group distribution. Comparing the experimental SOM-water partition coefficient (LogKoc) with the simulation predicted LogP suggests that the COSMO-RS based SOM cluster method can predict PAHs adsorption ability in SOM.


Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Adsorption , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Pollutants/analysis , Water
13.
ChemSusChem ; 15(13): e202102635, 2022 Jul 07.
Article En | MEDLINE | ID: mdl-35088547

5-Hydroxymethylfurfural (HMF) is identified as an important bio-based platform chemical to bridge petroleum-based and biomass-based resources. It can be obtained through dehydration of various carbohydrates as well as converted to value-added fuels and chemicals. As designer solvents, ionic liquids (ILs) and deep eutectic solvents (DESs) have been widely used in catalytic transformation of biomass derivatives to various chemicals. This Review summarizes recent progress in experimental and theoretical studies on dehydration of carbohydrates such as fructose, glucose, sucrose, cellobiose, chitosan, cellulose, inulin, and even raw biomass to generate HMF using ILs and DESs as catalysts/cocatalysts and/or solvents/cosolvents. It also gives an overview of IL and DES-involved catalytic transformation of HMF to downstream products via oxidation, reduction, esterification, decarboxylation, and so forth. Challenges and prospects of ILs and DESs are also proposed for further production of HMF and HMF derivatives from biomass in green and sustainable processes.


Ionic Liquids , Biomass , Cellulose , Deep Eutectic Solvents , Dehydration , Furaldehyde/analogs & derivatives , Humans , Solvents
14.
Food Chem ; 376: 131924, 2021 Dec 22.
Article En | MEDLINE | ID: mdl-34968917

To valorise olive mill wastewater phenols (OPs) potentially applied in food preservation, a novel stable and regularly spherical OPs-AgNPs (Davg = 78 nm) were successfully assembled in aqueous solution under the optimized conditions (pH 8.0, 5 mM AgNO3, 35C and 30 min). The results of antimicrobial zone diameters indicated that 50 µg/mL of promising OPs-AgNPs presented excellent antimicrobial effects. Especially, the cell wall damages of E. coli ATCC 23,815 were caused when OPs-AgNPs concentration was exceeded its MIC (8.58 µg/mL). Also, a significant down-regulating of the Ca2+-ATPase activity in E. coli was revealed, and the intracellular Ca2+ concentrations were thus decreased from 12.5 to 1.35 µg/mL after a treatment for 3 h. The apoptosis level of E. coli was significantly increased more than the control (55.13% of OPs-AgNPs vs 9.90% of control). In sum, OPs exerts enhanced antimicrobial function via penetrating cell membrane and targeting Ca2+-ATPase after chelated with AgNPs.

15.
Bioorg Chem ; 111: 104901, 2021 06.
Article En | MEDLINE | ID: mdl-33878647

Ursolic acid (UA) is an accessible triterpenoid, widely applied in the design and synthesis of antitumor compounds. However, the mechanism of its anti-tumor effect is still unclear. To verify the molecular mechanism of its biological activity, based on the bifunctional activity of ubiquitination and subsequent proteasomal degradation of the target protein of the proteolysis-targeting chimeras (PROTACs) strategy, here we report the design, synthesis and cellular activity of six UA PROTAC hydrochloride compounds 1A-1F, in which UA acts as the binding ligand of the PROTAC and is linked to thalidomide (E3 ligand) through a series of synthetic linkers. The results revealed that compound 1B, connected with a POE-3 (3-Polyoxyether) possessed remarkable in vitro antitumor activity (with the IC50 value of 0.23 ~ 0.39 µM against A549, Huh7, HepG2). WB results demonstrated that the administration of compound 1B induced significant degradation of MDM2 (only 25% to that of SM1), and promoted the expression of P21 and PUMA proteins, and thus inhibited the proliferation (77.67% of 1B vs 60.37% of CON in G1 phase) and promoted the apoptosis (26.74% of 1B vs 3.35% of CON) of A549 cells. This work demonstrated proof of designing the efficient target protein degradation by UA PROTACs with the POE linkers. In addition, we confirmed that UA possess the characteristic of targeted-binding the protein of murine double minute-2 protein (MDM2). This will lay a foundation for the comprehensive utilization of forest natural compound UA.


Antineoplastic Agents/pharmacology , Drug Design , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Thalidomide/pharmacology , Triterpenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Proteolysis/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Thalidomide/chemistry , Triterpenes/chemistry
16.
Front Chem ; 8: 601636, 2020.
Article En | MEDLINE | ID: mdl-33304887

Determination of serum cholesterol (Chol) is important for disease diagnosis, and has attracted great attention during the last few decades. Herein, a new magnetic nanoparticle-based ligand replacement strategy has been presented for chemical luminescence detection of Chol. The detection depends on ligand replacement from ferrocene (Fc) to Chol through a ß-cyclodextrin (ß-CD)-based host-guest interaction, which releases Fc-Hemin as a catalyst for the luminol/hydrogen peroxide chemical luminescence system. More importantly, the luminescence signal can be captured by the camera of a smartphone, thus realizing Chol detection with less instrument dependency. The limit of detection of this method is calculated to be 0.18 µM, which is comparable to some of the developed methods. Moreover, this method has been used successfully to quantify Chol from serum samples with a simple extraction process.

17.
Nanoscale ; 12(34): 17902-17914, 2020 Sep 14.
Article En | MEDLINE | ID: mdl-32844840

In order to develop highly active non-precious metal catalysts for the selective oxidation of the platform compound 5-hydroxymethylfurfural (HMF) to the value-added bio-chemical 2,5-diformylfuran (DFF), we prepared high purity bivalent Mn5O8 nanoplates by a microwave-assisted ionic liquid route. The precursor of bivalent Mn5O8 nanoplates was formed through π-π stacking between imidazolium rings of the ionic liquid 1-butyl-3-methyl-imidazolium chloride and extending hydrogen bonds between Cl anions and hydrohausmannite. An oriented aggregation growth occurred on the basis of the Ostwald ripening under microwave heating. The high purity bivalent Mn5O8 nanoplates obtained through calcination at 550 °C for 2 h exhibited high HMF conversion (51%) and DFF selectivity (94%) at 5 bar of oxygen pressure in 2 h. The high concentration of Mn4+ on the exterior surfaces of Mn5O8 nanoplates as active sites coupled with good crystallinity played key roles for desirable mass and heat transfer, and for fast desorption avoiding over-oxidation. The reaction process over the Mn5O8 nanoplates was proposed based on the understanding of Mn4+ active centers and lattice oxygen via a Mn4+/Mn2+ two-electron cycle to enhance their catalytic performance. Furthermore, the Mn5O8 nanoplates could be readily recovered and reused without loss of catalytic activity. Thus, the high purity Mn5O8 nanoplates with good catalytic performance raises the prospect of using the type of sole metal oxide for practical applications.

18.
Int J Nanomedicine ; 15: 3851-3868, 2020.
Article En | MEDLINE | ID: mdl-32764919

PURPOSE: The aim of this study was to develop a means of improving the bioavailability and anticancer activity of urushiol by developing an urushiol-loaded novel tumor-targeted micelle delivery system based on amphiphilic block copolymer poly(ethylene glycol)-b-poly-(ß-amino ester) (mPEG-PBAE). MATERIALS AND METHODS: We synthesized four different mPEG-PBAE copolymers using mPEG-NH2 with different molecular weights or hydrophobicity levels. Of these, we selected the mPEG5000-PBAE-C12 polymer and used it to develop an optimized means of preparing urushiol-loaded micelles. Response surface methodology was used to optimize this formulation process. The micellar properties, including particle size, pH sensitivity, drug release dynamics, and critical micelle concentrations, were characterized. We further used the MCF-7 human breast cancer cell line to explore the cytotoxicity of these micelles in vitro and assessed their pharmacokinetics, tissue distribution, and antitumor activity in vivo. RESULTS: The resulting micelles had a mean particle size of 160.1 nm, a DL value of 23.45%, and an EE value of 80.68%. These micelles were found to release their contents in a pH-sensitive manner in vitro, with drug release being significantly accelerated at pH 5.0 (98.74% in 72 h) without any associated burst release. We found that urushiol-loaded micelles were significantly better at inducing MCF-7 cell cytotoxicity compared with free urushiol, with an IC50 of 1.21 mg/L. When these micelles were administered to tumor model animals in vivo, pharmacokinetic analysis revealed that the total AUC and MRT of these micelles were 2.28- and 2.53-fold higher than that of free urushiol, respectively. Tissue distribution analyses further revealed these micelles to mediate significantly enhanced tumor urushiol accumulation. CONCLUSION: The pH-responsive urushiol-loaded micelles described in this study may be ideally suited for clinical use for the treatment of breast cancer.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catechols/chemistry , Catechols/pharmacology , Micelles , Polyethylene Glycols/chemistry , Polymers/chemistry , Antineoplastic Agents/pharmacokinetics , Biological Availability , Catechols/pharmacokinetics , Drug Carriers/chemistry , Drug Liberation , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Particle Size , Tissue Distribution
19.
Steroids ; 162: 108698, 2020 10.
Article En | MEDLINE | ID: mdl-32687846

Ursane and lupane type (1-((5-aryl-1,3,4-oxadiazol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl and (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl hybrids were prepared by 1,3-cycloaddition reactions of azole-derived azides with alkyne esters connected to positions C-3 and C-28 of triterpene core and tested for cytotoxicity. Hybrid compounds of 1,3,4-oxadiazoles attached at positions 3- and 28- of triterpenoid frame via triazole spacer and combinations of 1,2,5-oxadiazole or 1,3,4-oxadiazole, tethered with succinate linker and 1,2,3-triazole at the position 3- of the ursane backbone, were inactive in relation to all the cancer cells tested. Eventually, combinations of furoxan fragment and 1,2,3-triazole linked to C-28 position of triterpene backbone demonstrated marked cytotoxic activity towards MCF-7 and HepG2 cells. The most active ester of ursolic acid with (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl substituent and 3-O-acetyl group was superior in activity and selectivity over doxorubicin and ursolic acid on MCF-7 cells. The length of the carbon spacer group may be of crucial importance for cytotoxicity. The introduction of the additional ester linker between the C-28 of triterpenoid and triazole or changing triazole spacer between furoxan moiety and triterpenoid core resulted in activity decrease against all the tested cells. In accordance with molecular modeling results, the activity of new derivatives may be explained in terms of the interaction of the new hybrid molecules and Mdm2 binding sites.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacology , Triazoles/chemistry , Triterpenes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Chemistry Techniques, Synthetic , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Oxadiazoles/chemistry , Oxadiazoles/metabolism , Protein Conformation , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism
20.
Front Chem ; 8: 472, 2020.
Article En | MEDLINE | ID: mdl-32626687

Artemisinin and its derivatives (ARTs) are sort of important antimalarials, which exhibit a wide range of biological activities including anticancer effect. To solve the issues regarding poor solubility and limited bioavailability of ARTs, nanoformulation of ARTs has thus emerged as a promising strategy for cancer treatment. A common consideration on nanoARTs design lies on ARTs' delivery and controlled release, where ARTs are commonly regarded as hydrophobic drugs. Based on the mechanism that ARTs' activation relies on ferrous ions (Fe2+) or Fe2+-bonded complexes, new designs to enhance ARTs' activation have thus attracted great interests for advanced cancer nanotherapy. Among these developments, the design of a nanoparticle that can accelerate ARTs' activation has become the major consideration, where ARTs have been regarded as radical precursors. This review mainly focused on the most recent developments of ARTs nanotherapeutics on the basis of advanced drug activation. The basic principles in those designs will be summarized, and a few excellent cases will be also discussed in detail.

...