Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 310
1.
Phytother Res ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38739454

Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.

3.
Mol Hortic ; 4(1): 12, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38561782

Although there is increasing evidence suggesting that DNA methylation regulates seed development, the underlying mechanisms remain poorly understood. Therefore, we aimed to shed light on this by conducting whole-genome bisulfite sequencing using seeds from the large-seeded cultivar 'HZ' and the abortive-seeded cultivar 'NMC'. Our analysis revealed that the 'HZ' seeds exhibited a hypermethylation level compared to the 'NMC' seeds. Furthermore, we found that the genes associated with differentially methylated regions (DMRs) and differentially expressed genes (DEGs) were mainly enriched in the reactive oxygen species (ROS) metabolic pathway. To investigate this further, we conducted nitroblue tetrazolium (NBT) and 2,7-Dichlorodihydrofluorescein (DCF) staining, which demonstrated a significantly higher amount of ROS in the 'NMC' seeds compared to the 'HZ' seeds. Moreover, we identified that the gene LcGPX6, involved in ROS scavenging, exhibited hypermethylation levels and parallelly lower expression levels in 'NMC' seeds compared to 'HZ' seeds. Interestingly, the ectopic expression of LcGPX6 in Arabidopsis enhanced ROS scavenging and resulted in lower seed production. Together, we suggest that DNA methylation-mediated ROS production plays a significant role in seed development in litchi, during which hypermethylation levels of LcGPX6 might repress its expression, resulting in the accumulation of excessive ROS and ultimately leading to seed abortion.

4.
J Ethnopharmacol ; 325: 117889, 2024 May 10.
Article En | MEDLINE | ID: mdl-38336183

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Lycium barbarum L. (goji berry) is a traditional Chinese medicine and is often used to improve vision. While various goji cultivars may differentially treat retinal degeneration, however their comparative effectiveness remains unclear. AIM OF THE STUDY: To evaluate the protective effects of four goji cultivars on NaIO3-induced retinal degeneration mouse model and identify the most therapeutically potent cultivar. MATERIALS AND METHODS: The principal compounds in the extracts of four goji cultivars were characterized by UPLC-Q-TOF/MS. A retinal degeneration mouse model was established via NaIO3 injection. Dark-light transition and TUNEL assays were used to assess visual function and retinal apoptosis. The levels of antioxidative, inflammatory, and angiogenic markers in serums and eyeballs were measured. Hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis were used to objectively compare the treatment responses. RESULTS: Sixteen compounds were identified in goji berry extracts. All goji berry extracts could reverse NaIO3-induced visual impairment, retinal damage and apoptosis. The samples from the cultivar of Ningqi No.1 significantly modulated oxidative stress, inflammation, and vascular endothelial growth factor levels, which are more effectively than the other cultivars based on integrated multivariate profiling. CONCLUSION: Ningqi No.1 demonstrated a stronger protective effect on mouse retina than other goji cultivars, and is a potential variety for further research on the treatment of retinal degeneration.


Lycium , Retinal Degeneration , Mice , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Lycium/metabolism , Vascular Endothelial Growth Factor A/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress , Disease Models, Animal
5.
J Ethnopharmacol ; 324: 117816, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38286154

ETHNOPHARMACOLOGICAL RELEVANCE: Bufei Huoxue capsule (BHC) as a classic Chinese patent medicine formula, has the efficacy of tonifying the lungs and activating the blood. It has been extensively used in China for the treatment of chronic obstructive pulmonary disease (COPD) clinically. However, its mechanism is still unclear, which hampers the applications of BHC in treating COPD. AIM OF THE STUDY: The purpose of the present study was to demonstrate the protective efficacy and mechanism of BHC on COPD model rats by integrating serum metabolomics analysis and network pharmacology study. MATERIALS AND METHODS: A COPD rat model was established by cigarette fumigation combined with lipopolysaccharide (LPS) airway drip for 90 consecutive days. After oral administration for 30 days, the rats were placed in the body tracing box of the EMKA Small Animal Noninvasive Lung Function Test System to determine lung function related indexes. Histopathological alteration was observed by H&E staining and Masson staining. The serum levels of inflammatory cytokine, matrix metalloprotein 9, and laminin were determined by ELISA kits. Oxidative stress levels were tested by biochemical methods. UHPLC-Q-TOF/MS analysis of serum metabolomics and network pharmacology were performed to reveal the bioactive metabolites, key components and pathways for BHC treating COPD. WB and ELISA kits were used to verify the effects of BHC on key pathway. RESULTS: BHC could improve lung function, immunity, lung histopathological changes and collagen deposition in COPD model rats. It also could significantly reduce inflammatory response in vivo, regulate oxidative stress level, reduce laminin content, and regulate protease-antiprotease balance. Metabolomics analysis found 46 biomarkers of COPD, of which BHC significantly improved the levels of 23 differential metabolites including arachidonic acid, leukotriene B4 and prostaglandin E2. Combined with the results of network pharmacology, the components of BHC, such as calycosin, oxypaeoniflora, (S)-bavachin and neobavaisoflavone could play therapeutic roles through the arachidonic acid pathway. In addition, the results of WB and ELISA indicated that BHC could suppress the expressions of COX2 and 5-LOX in lung tissues and inhibit the generation of AA and its metabolites in serum samples. Regulation of arachidonic acid metabolic pathway may be the crucial mechanism for BHC treating COPD. CONCLUSIONS: In summary, the studies indicated that BHC exhibited the protective effect on COPD model rats by anti-inflammatory and anti-oxidative properties through arachidonic acid metabolism pathway. This study provided beneficial support for the applications of BHC in treating COPD.


Drugs, Chinese Herbal , Medicine, Chinese Traditional , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Network Pharmacology , Arachidonic Acid , Rats, Sprague-Dawley , Pulmonary Disease, Chronic Obstructive/metabolism , Metabolomics/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Laminin
6.
Curr Drug Metab ; 24(6): 434-447, 2023.
Article En | MEDLINE | ID: mdl-37559536

BACKGROUND: 3-acetyl-11-keto-beta-boswellic acid (AKBA) and 11-keto-boswellic acid (KBA) are the main active components of frankincense as pentacyclic triterpenoids, which are designated by the European Pharmacopoeia 8.0 as the quality standard for the evaluation of Indian frankincense, 2-methoxy-8,12-epoxygermacra- 1(10),7,11-trien-6-one (MCS134) is a non-volatile sesquiterpene compound in myrrh. OBJECTIVE: In this paper, the absorption pharmacokinetics and metabolites of AKBA, KBA and MCS134 after frankincense, myrrh and their compatibility were analyzed, elaborated their absorption and metabolism mechanism and provided the ideas for the research on the bioactive components of frankincense and myrrh compatibility in vivo. METHODS: The area under the blood concentration time curve (AUC), half-life (t1/2) and drug clearance (CL) of AKBA, KBA and MCS134 in rats were analyzed by LC-TQ / MS. The metabolites of AKBA, KBA and MCS134 in rats were analyzed by ultra-high pressure liquid chromatography with a linear ion trap-high resolution Orbitrap mass spectrometry system (UHPLC-LTQ-Orbitrap-MS). RESULTS: The results showed that AKBA, KBA and MCS134 reached the maximum plasma concentration at about 2 h, 2 h and 15 min, respectively. AUC0-t and t1/2 of the three components increased in varying degrees after compatibility, and the clearance/ bioavailability (CL/F) decreased. AKBA, KBA and MCS134 were metabolized in phase I and phase II in rats, and there represented differences before and after compatibility. CONCLUSION: After the compatibility of frankincense and myrrh, the absorption of effective components was improved to some extent, and there were some differences in the metabolites in rats. The results provide ideas for elucidating the in vivo effect mechanism of frankincense and myrrh.

7.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2387-2395, 2023 May.
Article Zh | MEDLINE | ID: mdl-37282868

As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.


Antineoplastic Agents , Drugs, Chinese Herbal , Lycium , Lycium/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Structure-Activity Relationship , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry
8.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1238-1248, 2023 Mar.
Article Zh | MEDLINE | ID: mdl-37005808

Huoluo Xiaoling Dan is a classical prescription commonly used for blood circulation and pain relief in clinic with obvious effects. To make it directly treat lesion and improve the effect, this research optimized the preparation process of Huoluo Xiaoling gel paste and further evaluated its in vitro transdermal absorption performance, so as to provide a scientific basis for its development and utilization. Using primary viscosity, holding viscosity, and sensory score as evaluation indexes, the matrix amount of gel paste was determined by the single factor test and Box-Behnken response surface method. The ultra-performance liquid chromatography(UPLC) method was established to determine the content of eight active ingredients, including Danshensu, ferulic acid, salvianolic acid B, salvianolic acid A, ligustilide, tanshinone Ⅱ_A, 11-keto-ß-boswellic(KBA), and 3-acetyl-11-keto-ß-boswellic acid(AKBA). A mo-dified Franz diffusion cell method was used to evaluate and compare the absorption properties of the gel paste without volatile oil and with volatile oil microemulsion. The results showed that the optimal prescription for Huoluo Xiaoling gel paste matrix was NP700(1.35 g), glycerol(7.00 g), micropowder silica gel(1.25 g), sodium carboxymethyl cellulose(0.20 g), tartaric acid(0.06 g), and glyceryl aluminum(0.04 g). The mass fractions of eight active ingredients in the paste were successively 0.48, 0.014, 0.95, 0.39, 0.57, 0.055, 0.35, and 0.97 mg·g~(-1). The results of the in vitro transdermal absorption test showed that the addition of the volatile oil or the volatile oil microemulsion promoted the transdermal absorption of the active ingredients, and the law of drug penetration conformed to the zero equation or the Higuchi equation. The gel paste prepared by the optimal prescription has good appearance and adhesion, with no residue, and has the characteristics of skeletal slow-release preparation, which is easy to reduce the number of administration, la-ying a foundation for the development of new external dosage forms of Huoluo Xiaoling Dan.


Oils, Volatile , Skin Absorption , Administration, Cutaneous , Chromatography, Liquid , Viscosity
9.
Article En | MEDLINE | ID: mdl-37011544

Xiexin Tang (XXT) is a classic prescription for treating diabetes in clinical practices for thousands of years in China, which has been also proved by a large number of modern pharmacological studies. However, due to its complex composition, the bioactive ingredients of XXT is still unclear. In present researches, spectrum-effect relationship analysis is widely used to explore the material basis of traditional medical herbs, so this method was adopted in this study. Firstly, the extract of XXT was separated and enriched into 5 fractions by macroporous adsorption resin. Then, UPLC-Q-TOF/MS method was used for qualitative identification of components in each eluting part, and efficacy of each fraction was assessed by the T2DM rat model. Based on grey relational analysis and pearson bivariate correlation analysis, it was found that the components such as berberine, gallic acid, catechin, epicatechin, acteoside, berberastine and 1-O-galloyl-ß-D-glucose might be the main effective basis of XXT to improve T2DM.


Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Rats , Animals , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , China , Chromatography, High Pressure Liquid/methods
10.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5789-5796, 2022 Nov.
Article Zh | MEDLINE | ID: mdl-36471996

Herbal pair is formed based on the experience summary of doctors' deep understanding and perception of the medicinal nature in long-term clinical practice. It gradually becomes the exquisite structural unit for preparing traditional Chinese medicine(TCM) prescriptions, and often plays a core bridge role in the prescription combination. Frankincense and myrrh are raw resin materials of incense abroad, which are subsequently included as Chinese medicinal herbs and endowed with rich medicinal connotation. With the functions of relaxing Zang-fu organs, activating blood and relieving pain, they have definite clinical efficacy. From the perspective of herbal description and clinical application, this study systematically analyzed the combination of frankincense and myrrh as well as their combination proportion, efficacy characterization, diseases and syndromes, effective components and action mechanism. On this basis, the focus of in-depth research of frankincense-myrrh and the application prospects were proposed, in order to further reveal the potential meditation law of this herbal pair, thus contributing to clinical practice and drug innovation of traditional Chinese medicine, and providing reference for understanding of TCM medicinal nature and research of herbal pairs.


Drugs, Chinese Herbal , Frankincense , Humans , Frankincense/chemistry , Commiphora , Resins, Plant/chemistry , Medicine, Chinese Traditional , Drugs, Chinese Herbal/therapeutic use
11.
Appl Microbiol Biotechnol ; 106(21): 6899-6913, 2022 Nov.
Article En | MEDLINE | ID: mdl-36190540

Constipation is very pervasive all over the world. It is a common multifactorial gastrointestinal disease, and its etiology and pathomechanism are not completely clear. Now, increasing evidence shows that intestinal flora is closely related to constipation. Intestinal flora is the largest microbiota in the human body and has powerful metabolic functions. Intestinal flora can produce a variety of metabolites, such as bile acids, short-chain fatty acids, tryptophan metabolites, and methane, which have important effects on intestinal motility and secretion. The host can also monitor the intestinal flora and regulate gut dysbacteriosis in constipation. To explore the relationship between intestinal flora and host, the combination of multiomics technology has become the powerful and effective method. Furthermore, the homeostasis restoration of intestinal flora also provides a new strategy for the treatment of constipation. This review aims to explore the interaction between intestinal flora and host in constipation, which contributes to disclose the pathogenesis of constipation and the development of novel drugs for the treatment of constipation from the perspective of intestinal flora. KEY POINTS: • This review highlights the regulation of gut microbiota on the intestinal motility and secretion of host. • The current review gives an insight into the role of the host on the recognition and regulation of intestinal ecology under constipation. • The article also introduces some novel methods of current gut microbiota research and gut microbiota-based constipation therapies.


Gastrointestinal Microbiome , Humans , Tryptophan , Constipation/metabolism , Fatty Acids, Volatile , Bile Acids and Salts/pharmacology , Methane
12.
Front Pharmacol ; 13: 987668, 2022.
Article En | MEDLINE | ID: mdl-36249745

Diabetic kidney disease (DKD) is a common diabetic complication. Salvia miltiorrhiza has significant therapeutic effects on diabetes complications, although the mechanism remains unclear. Here, biochemical indicators and pathological changes were used to screen out the optimal Salvia miltiorrhiza multi-bioactive compounds combination. Metabolomics, transcriptomics and proteomics were used to explore the pathogenesis of DKD. RT-PCR and parallel reaction monitoring targeted quantitative proteome analysis were utilized to investigate treatment mechanisms of the optimal Salvia miltiorrhiza multi-bioactive compounds combination. The db/db mice showed biochemical abnormalities and renal lesions. The possible metabolic pathways were steroid hormone biosynthesis and sphingolipid metabolism. The 727 differential genes found in transcriptomics were associated with biochemical indicators via gene network to finally screen 11 differential genes, which were mainly key genes of TGF-ß/Smad and PI3K/Akt/FoxO signaling pathways. Salvia miltiorrhiza multi-bioactive compounds combination could significantly regulate the Egr1, Pik3r3 and Col1a1 genes. 11 differentially expressed proteins involved in the two pathways were selected, of which 9 were significantly altered in db/db mice compared to db/m mice. Salvia miltiorrhiza multi-bioactive compounds combination could callback Q9DBM2, S4R1W1, Q91Y97, P47738, A8DUK4, and A2ARV4. In summary, Salvia miltiorrhiza multi-bioactive compounds combination may ameliorate kidney injury in diabetes through regulation of TGF-ß/Smad and PI3K/Akt/FoxO signaling pathways.

13.
Int J Biol Macromol ; 221: 965-975, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36113595

Starch nanoparticles (SNPs) was produced from type-A, B and C native starches (corn, potato and Trichosanthes kirilowii pulp starches respectively), via the nanoprecipitation method. The SNPs showed different amylose contents, water contact angles, surface morphologies and urea clearance performances. In this work, to examine the parameters of SNPs that may change the urea adsorption capacity, urea adsorption performance in adsorption environments with different pH values, urea concentrations, and adsorption times was examined. Thereafter, the characteristics of SNPs were tested by water contact angle measurements (WCA), transmission electron microscopy, specific surface area measurements, gel permeation chromatography, and zeta potential analysis. The results showed that the Trichosanthes kirilowii pulp (C) SNPs show better adsorption than the corn (A) and potato (B) SNPs. The hydrophobicity of SNPs promotes the urea adsorption of the SNPs. Using grey relational analysis, it was found that WCA and Mn are the critical parameter affecting the adsorption performance, with WCA and Mn within the ranges of 31-33° and 1900-2100 kDa, respectively, were found to be the conditions for optimal urea adsorption.


Nanoparticles , Solanum tuberosum , Starch/chemistry , Adsorption , Urea , Dialysis Solutions/analysis , Amylose/chemistry , Solanum tuberosum/chemistry , Zea mays/chemistry , Nanoparticles/chemistry , Water
14.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4469-4479, 2022 Aug.
Article Zh | MEDLINE | ID: mdl-36046877

This study was designed to determine the metabolites of Yiqi Baoyuan Prescription(YQBYP) in rats. The ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry(UPLC-TOF-MS) and mass defect filter(MDF) were employed to analyze the metabolites of YQBYP in rat plasma, bile, urine and feces. Chromatographic separation was conducted on Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) under gradient elution with 0.1% formic acid aqueous solution(A)-acetonitrile(B), and the column temperature was 30 ℃. Electrospray ion(ESI) source was used under positive and negative ion modes, with capillary voltage of 3.0 kV and mass scanning range of m/z 100-1 000. In this experiment, 9 prototype components and 36 metabolites were identified in rat plasma, bile, urine and feces samples. The results showed that the main metabolic pathways of YQBYP in rats involved methylation, demethylation, oxidation, and other phase Ⅰ reactions as well as glucuronidation, sulfation, and other phase Ⅱ reactions. This study provided scientific basis for clarifying the therapeutic material basis of YQBYP and product development.


Bile , Prescriptions , Administration, Oral , Animals , Bile/chemistry , Chromatography, High Pressure Liquid/methods , Feces/chemistry , Rats , Rats, Sprague-Dawley
15.
J Sep Sci ; 45(22): 4039-4051, 2022 Nov.
Article En | MEDLINE | ID: mdl-36084259

Poria cocos is an edible fungus used as a health product and traditional Chinese medicinal preparation. Nevertheless, little is known about its nutrients. In this study, ultra-high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry was conducted to quantify nucleosides, nucleobases, and amino acids in 32 batches of Poria cocos samples collected from Anhui, Sichuan, Hubei, Hunan, and Guizhou. Subsequently, the linearity, precision, repeatability, stability, and recovery of our methods were validated. Samples from different regions were clearly separated by partial least squares discriminant analysis and cluster analysis. Our results suggested that Poria cocos samples from different geographical environments differed in nucleosides, nucleobases, and amino acids. The plot of variable importance for projection disclosed differential compositions of L-Leucine, Uridine, L-Asparagine, L-Glutamine, L-phenylalanine, L-Ornithine monohydrochloride, L-Hydroxyproline, Taurine, and Inosine in Poria cocos from five regions. We found the highest content of total analytes, total amino acids, and total non-essential amino acids in Poria cocos from Anhui, total essential amino acids in the Sichuan samples, and total nucleosides in the Hunan samples. Overall, we determined the content of Poria cocos-derived nucleosides, nucleobases, and amino acids, providing the foothold for further chemical mining and use of Poria cocos.


Poria , Wolfiporia , Wolfiporia/chemistry , Tandem Mass Spectrometry/methods , Nucleosides/analysis , Amino Acids/analysis , Principal Component Analysis , Chromatography, High Pressure Liquid/methods , Nutrients/analysis , Poria/chemistry
16.
Membranes (Basel) ; 12(8)2022 Jul 28.
Article En | MEDLINE | ID: mdl-36005654

Due to the diversity and complexity of the components in traditional Chinese medicine (TCM) extracts, serious membrane fouling has become an obstacle that limits the application of membrane technology in TCM. Pectin, a heteropolysaccharide widely existing in plant cells, is the main membrane-fouling substance in TCM extracts. In this study, a hydrophilic hybrid coating was constructed on the surface of a polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane co-deposited with polydopamine (pDA) and (3-Aminopropy) triethoxysilane (KH550) for pectin antifouling. Characterization analysis showed that hydrophilic coating containing hydrophilic groups (-NH3, Si-OH, Si-O-Si) formed on the surface of the modified membrane. Membrane filtration experiments showed that, compared with a matched group (FRR: 28.66%, Rr: 26.87%), both the flux recovery rate (FRR) and reversible pollution rate (Rr) of the pDA and KH550 coated membrane (FRR: 48.07%, Rr: 44.46%) increased, indicating that pectin absorbed on the surface of membranes was more easily removed. Based on the extended Derjaguin-Laudau-Verwey-Overbeek (XDLVO) theory, the fouling mechanism of a PVDF UF membrane caused by pectin was analyzed. It was found that, compared with the pristine membrane (144.21 kT), there was a stronger repulsive energy barrier (3572.58 kT) to confront the mutual adsorption between the coated membrane and pectin molecule. The total interface between the modified membrane and the pectin molecule was significantly greater than the pristine membrane. Therefore, as the repulsion between them was enhanced, pectin molecules were not easily adsorbed on the surface of the coated membrane.

17.
Ther Adv Chronic Dis ; 13: 20406223221091177, 2022.
Article En | MEDLINE | ID: mdl-35924009

Observational findings achieved that gut microbes mediate human metabolic health and disease risk. The types of intestinal microorganisms depend on the intake of food and drugs and are also related to their metabolic level and genetic factors. Recent studies have shown that chronic inflammatory pain is closely related to intestinal microbial homeostasis. Compared with the normal intestinal flora, the composition of intestinal flora in patients with chronic inflammatory pain had significant changes in Actinomycetes, Firmicutes, Bacteroidetes, etc. At the same time, short-chain fatty acids and amino acids, the metabolites of intestinal microorganisms, can regulate neural signal molecules and signaling pathways, thus affecting the development trend of chronic inflammatory pain. Glucocorticoids and non-steroidal anti-inflammatory drugs in the treatment of chronic inflammatory pain, the main mechanism is to affect the secretion of inflammatory factors and the abundance of intestinal bacteria. This article reviews the relationship between intestinal microorganisms and their metabolites on chronic inflammatory pain and the possible mechanism.

18.
J Anal Methods Chem ; 2022: 2565494, 2022.
Article En | MEDLINE | ID: mdl-35795192

According to the sixth edition of China's "New Coronavirus Diagnosis and Treatment Plan (NCDTP)," ReDuNing injection (RDN) was firstly introduced to treat severe and critical COVID-19, whereas its combination with broad-spectrum antibiotics was suggested to take with extreme caution and full reasons. Therefore, we aim to describe the pharmacokinetics of seven active phytochemicals and semiquantification of nine relevant metabolites in ReDuNing injection (RDN) after combining with cefuroxime sodium (CNa) for injection in rat plasma. Male Sprague-Dawley rats were randomly assigned to six groups, and they were intravenously administered, respectively, with different prescriptions of RDN (2 mL/kg) and CNa (225 mg/kg). At different time points (0.03, 0.08, 0.17, 0.24, 0.33, 0.50, 0.67, 1, and 6 h) after administration, the drug concentrations of iridoids glycosides, organic acids, and metabolites in rat plasma were determined using ultrahigh-pressure liquid chromatography coupled with linear ion rap-orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS), and main pharmacokinetic parameters were estimated by noncompartment model. The results showed that there were differences in pharmacokinetic parameters, AUC(0-t), T1/2, C max, CL of iridoids glycosides, and organic acids, after the intravenous administration of the different combinations of RDN and CNa. Moreover, different combinations of the injections also resulted in different curves of relative changes of each metabolite. The obtained results suggested that RDN and CNa existed pharmacokinetic drug-herb interactions in rats. The findings not only lay the foundation for evaluating the safety of RDN injection combined with CNa but also make contributions to clinically applying RDN injection combined with CNa, which works potentially against severe forms of COVID-19.

19.
J Ethnopharmacol ; 297: 115525, 2022 Oct 28.
Article En | MEDLINE | ID: mdl-35811027

ETHNOPHARMACOLOGICAL RELEVANCE: Guizhi-Fuling capsule (GZFL), a well-known herbal remedy, has been widely used to treat primary dysmenorrhea (PD). Hence, systematic identifying multiple active ingredients and the involved mechanism is essential and urgently needed for GZFL. AIM OF THE STUDY: This study was planned to assess the pharmacokinetics of GZFL in rats, and identify whether these GZFL-derived absorbed components (ACs) contribute to the efficacy of source herbs and relevant mechanism. MATERIALS AND METHODS: The in vivo pharmacokinetic profile of 11 phytochemicals and 13 metabolites in healthy and PD rats were evaluated using liquid chromatography with mass spectrometry (LC-MS/MS). Whereafter, the introduced contribution strategy assessed ACs' effect (doses = their contents in GZFL) in PD rats with the mechanism. RESULT: The pharmacokinetic profiles of prototypes and metabolites differed in healthy and PD rats. As a main proxy of GZFL, 11ACs exerted an anti-PD effect (improvement of indexes for writhing latency, writhing time, PGF2α/PGE2, TXB2/6-keto-PGF1α and ß-EP) by regulating PI3K-Akt/ERK pathway. CONCLUSION: As a paradigmatic example, 11ACs contributed an average of 113.55% to GZFL in terms of anti-PD efficacy, providing an approach to rapidly, accurately and consistently identify the bioactive components and their pathway from herbs.


Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Animals , Chromatography, Liquid , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Dysmenorrhea/drug therapy , Female , Humans , Prostaglandins F , Proto-Oncogene Proteins c-akt , Rats , Tandem Mass Spectrometry/methods
20.
Front Plant Sci ; 13: 928760, 2022.
Article En | MEDLINE | ID: mdl-35845641

The roots of Angelica sinensis (Oliv.) Diels are well known for their efficacy in promoting blood circulation. Although many studies have indicated that phthalides are the main chemical components responsible for the pharmacological properties of A. sinensis, the phthalide biosynthetic pathway and enzymes that transform different phthalides are still poorly understood. We identified 108 potential candidate isoforms for phthalide accumulation using transcriptome and metabolite profile analyses. Then, six enzymes, including phospho-2-dehydro-3-deoxyheptonate aldolase 2, shikimate dehydrogenase, primary amine oxidase, polyphenol oxidase, tyrosine decarboxylase, and shikimate O-hydroxycinnamoyl transferase, were identified and proven to be involved in phthalide accumulation by heterologously expressing these proteins in Escherichia coli. We proposed a possible mechanism underlying phthalide transformation and biosynthetic pathways in A. sinensis based on our findings. The results of our study can provide valuable information for understanding the mechanisms underlying phthalide accumulation and transformation and enable further development of quality control during the cultivation of A. sinensis.

...