Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Yi Chuan ; 46(9): 716-726, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39275871

RESUMEN

Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and in vivo delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from Staphylococcus lugdunensis and AsCas12a derived from Acidaminococcus sp. Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for EMX1, NUDT5 and AAVS1 gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Células HEK293
2.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4204-4218, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37877400

RESUMEN

During the gene editing process mediated by CRISPR/Cas9, precise genome editing and gene knock-in can be achieved by the homologous recombination of double-stranded DNA (dsDNA) donor template. However, the low-efficiency of homologous recombination in eukaryotic cells hampers the development and application of this gene editing strategy. Here, we developed a novel CRISPR/Cas9-hLacI donor adapting system (DAS) to enhance the dsDNA-templated gene editing, taking the advantage of the specific binding of the LacI repressor protein and the LacO operator sequence derived for the Escherichia coli lactose operon. The codon-humanized LacI gene was fused as an adaptor to the Streptococcus pyogenes Cas9 (SpCas9) and Staphylococcus lugdunensis Cas9 (SlugCas9-HF) genes, and the LacO operator sequence was used as the aptamer and linked to the dsDNA donor template by PCR. The Cas9 nuclease activity after the fusion and the homology-directed repair (HDR) efficiency of the LacO-linked dsDNA template were firstly examined using surrogate reporter assays with the corresponding reporter vectors. The CRISPR/Cas9-hLacI DASs mediated genome precise editing were further checked, and we achieved a high efficiency up to 30.5% of precise editing at the VEGFA locus in HEK293T cells by using the CRISPR/SlugCas9-hLacI DAS. In summary, we developed a novel CRISPR/Cas9-hLacI DAS for dsDNA-templated gene editing, which enriches the CRISPR/Cas9-derived gene editing techniques and provides a novel tool for animal molecular design breeding researches.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Animales , Sistemas CRISPR-Cas/genética , Células HEK293 , Recombinación Homóloga , ADN
3.
Yi Chuan ; 44(8): 708-719, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36384669

RESUMEN

The fast-rising CRISPR-derived gene editing technologies has been widely used in the fields of life science and biomedicine, as well as plant and animal breeding. However, the efficiency of homology-directed repair (HDR), an important strategy for gene knock-in and base editing, remains to be improved. In this study, we came up with the term Donor Adapting System (DAS) to summarize those CRISPR/Cas9 systems modified with adaptor for driving aptamer-fused donor DNA. A set of CRISPR/Cas9-Gal4BD DAS was designed in our study. In this system, Gal4 DNA binding domain (Gal4BD) is used as adaptor to fuse with Cas9 protein, and Gal4 binding sequence (Gal4BS) is used as aptamer to bind to the double-stranded DNA (dsDNA) donor, in order to improve the HDR efficiency. Preliminary results from the HEK293T-HDR.GFP reporter cell line show that the HDR editing efficiency could be improved up to 2-4 times when donor homologous arms under certain length (100-60 bp). Further optimization results showed that the choice of fusion port and fusion linker would affect the expression and activity of Cas9, while the Cas9-Gal4BD fusion with a GGS5 linker was the prior choice. In addition, the HDR efficiency was likely dependent on the aptamer-dsDNA donor design, and single Gal4BD binding sequence (BS) addition to the 5'-end of intent dsDNA template was suggested. Finally, we achieved enhanced HDR editing on the endogenous AAVS1 and EMX1 sites by using the CRISPR/Gal4BD-Cas9 DAS, which we believe can be applied to facilitate animal molecular design breeding in the future.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN por Recombinación , Animales , Humanos , ADN , Células HEK293
4.
J Zhejiang Univ Sci B ; 23(2): 141-152, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187887

RESUMEN

Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9), the third-generation genome editing tool, has been favored because of its high efficiency and clear system composition. In this technology, the introduced double-strand breaks (DSBs) are mainly repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The high-fidelity HDR pathway is used for genome modification, which can introduce artificially controllable insertions, deletions, or substitutions carried by the donor templates. Although high-level knock-out can be easily achieved by NHEJ, accurate HDR-mediated knock-in remains a technical challenge. In most circumstances, although both alleles are broken by endonucleases, only one can be repaired by HDR, and the other one is usually recombined by NHEJ. For gene function studies or disease model establishment, biallelic editing to generate homozygous cell lines and homozygotes is needed to ensure consistent phenotypes. Thus, there is an urgent need for an efficient biallelic editing system. Here, we developed three pairs of integrated selection systems, where each of the two selection cassettes contained one drug-screening gene and one fluorescent marker. Flanked by homologous arms containing the mutated sequences, the selection cassettes were integrated into the target site, mediated by CRISPR/Cas9-induced HDR. Positively targeted cell clones were massively enriched by fluorescent microscopy after screening for drug resistance. We tested this novel method on the amyloid precursor protein (APP) and presenilin 1 (PSEN1) loci and demonstrated up to 82.0% biallelic editing efficiency after optimization. Our results indicate that this strategy can provide a new efficient approach for biallelic editing and lay a foundation for establishment of an easier and more efficient disease model.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN por Recombinación , Alelos , Reparación del ADN por Unión de Extremidades , Edición Génica/métodos
5.
Toxicology ; 467: 153099, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35066102

RESUMEN

Alginic acid (AA) is a kind of polysaccharide extracted from brown seaweeds and has been widely used in food industry. Certain positive effects of AA, such as anti-inflammation and anti-allergy, have been reported. Nevertheless, as a potential chemical contaminant of the environment, its impact on female reproductive system remains to be investigated. The purpose of this study is to explore the impact of AA on ovary and to investigate the further cellular mechanism. Primarily, in vitro cultured mouse ovary granulosa cells (GCs) were treated with AA at a concentration of 10µM for 24 h. The cells and supernatant were collected and subjected to further measures. The results demonstrated that after being treated with 10µM AA for 24 h the levels of estradiol and progesterone in supernatant were down-regulated. And excessive reactive oxygen species (ROS) and declined antioxidant capacity were also determined. Additionally, a large number of apoptotic bodies and autophagic vesicles were found in the experimental cells, and the mitochondria-mediated apoptotic pathway was demonstrated to play a main role in GCs apoptosis. To further investigate the effect of AA on ovary, the female ICR mice were administered with AA (10 mg/ kg bodyweight) intraperitoneally for successive 35 days, and the estrus phase was recorded simultaneously. After exposure, the ovaries and blood samples were collected for further analysis. The results revealed that the estrus period of the mice was shortened and the interestrus period was extended after being treated with AA for 35 days. At the organismal level, the numbers of antral follicles and atresia follicles increased and the levels of pro-apoptosis and autophagy-related proteins were detected upregulated after AA treatment. Taken together, both in vivo and in vitro data suggested that AA has toxicity on female reproduction by disrupting estrogen production and inducing oxidative stress, mitochondria-mediated apoptosis and autophagy. Our results provide new scientific basis and the concern for controlling the increasing use of AA.


Asunto(s)
Ácido Algínico/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Hormonas Esteroides Gonadales/metabolismo , Células de la Granulosa/efectos de los fármacos , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Células Cultivadas , Estradiol/sangre , Ciclo Estral/sangre , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas Esteroides Gonadales/sangre , Células de la Granulosa/metabolismo , Células de la Granulosa/ultraestructura , Ratones Endogámicos ICR , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Ovario/metabolismo , Ovario/ultraestructura , Progesterona/sangre , Vías Secretoras , Factores de Tiempo
6.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008541

RESUMEN

MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs and play critical roles in the regulation of post-transcriptional gene expression. Our previous study uncovered that chi-miR-487b-3p is widespread in different goat tissues, which is significantly higher in muscle, especially in lamb. Here, we demonstrate the role of chi-miR-487b-3p as a myogenic miRNA that regulates skeletal muscle development. chi-miR-487b-3p overexpression was demonstrated to significantly inhibit goat myoblast proliferation and differentiation, whereas chi-miR-487b-3p inhibition resulted in the opposite effects. Next, chi-miR-487b-3p was predicted to target the 3'UTR of insulin receptor substrate 1 (IRS1) gene by Target-Scan and miRDB. The results of dual-luciferase assay, RT-qPCR, and western blot all confirmed that IRS1 might be a direct target of chi-miR-487b-3p as its expression was negatively regulated by chi-miR-487b-3p. siRNA silencing of IRS1 further demonstrated significant inhibition on goat myoblast proliferation and differentiation, confirming the effect of IRS1 downregulation by chi-miR-487b-3p in myogenesis. In addition, chi-miR-487b-3p knockout goat myoblast clones were generated using CRISPR/Cas9 technology, and we further illustrated that chi-miR-487b-3p regulates goat myoblast growth through the PI3K/Akt signaling pathway by targeting IRS1. Collectively, our work demonstrated that chi-miR-487b-3p is a potent inhibitor of skeletal myogenesis and provided new insights into the mechanisms of miRNA on the regulation of goat growth.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , Cabras/genética , MicroARNs/genética , Mioblastos/fisiología , Transducción de Señal/genética , Animales , Células Cultivadas , Regulación hacia Abajo/genética , Cabras/fisiología , Proteínas Sustrato del Receptor de Insulina/genética , Desarrollo de Músculos/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ovinos/genética , Ovinos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA