Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 386(1): 70-79, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230799

RESUMEN

Portal hypertension (PT) commonly occurs in cirrhosis. Nitric oxide (NO) imbalance contributes to PT via reduced soluble guanylyl cyclase (sGC) activation and cGMP production, resulting in vasoconstriction, endothelial cell dysfunction, and fibrosis. We assessed the effects of BI 685509, an NO-independent sGC activator, on fibrosis and extrahepatic complications in a thioacetamide (TAA)-induced cirrhosis and PT model. Male Sprague-Dawley rats received TAA twice-weekly for 15 weeks (300-150 mg/kg i.p.). BI 685509 was administered daily for the last 12 weeks (0.3, 1, and 3 mg/kg p.o.; n = 8-11 per group) or the final week only (Acute, 3 mg/kg p.o.; n = 6). Rats were anesthetized to measure portal venous pressure. Pharmacokinetics and hepatic cGMP (target engagement) were measured by mass spectrometry. Hepatic Sirius Red morphometry (SRM) and alpha-smooth muscle actin (αSMA) were measured by immunohistochemistry; portosystemic shunting was measured using colored microspheres. BI 685509 dose-dependently increased hepatic cGMP at 1 and 3 mg/kg (3.92 ± 0.34 and 5.14 ± 0.44 versus 2.50 ± 0.19 nM in TAA alone; P < 0.05). TAA increased hepatic SRM, αSMA, PT, and portosystemic shunting. Compared with TAA, 3 mg/kg BI 685509 reduced SRM by 38%, αSMA area by 55%, portal venous pressure by 26%, and portosystemic shunting by 10% (P < 0.05). Acute BI 685509 reduced SRM and PT by 45% and 21%, respectively (P < 0.05). BI 685509 improved hepatic and extrahepatic cirrhosis pathophysiology in TAA-induced cirrhosis. These data support the clinical investigation of BI 685509 for PT in patients with cirrhosis. SIGNIFICANCE STATEMENT: BI 685509 is an NO-independent sGC activator that was tested in a preclinical rat model of TAA-induced nodular, liver fibrosis, portal hypertension, and portal systemic shunting. BI 685509 reduced liver fibrosis, portal hypertension, and portal-systemic shunting in a dose-dependent manner, supporting its clinical assessment to treat portal hypertension in patients with cirrhosis.


Asunto(s)
Hipertensión Portal , Cirrosis Hepática Experimental , Ratas , Masculino , Animales , Guanilil Ciclasa Soluble/farmacología , Tioacetamida/efectos adversos , Ratas Sprague-Dawley , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/tratamiento farmacológico , Hipertensión Portal/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/complicaciones , Hígado , GMP Cíclico
2.
J Pharmacol Exp Ther ; 384(3): 382-392, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36507845

RESUMEN

Activation of soluble guanylate cyclase (sGC) to restore cyclic guanosine monophosphate (cGMP) and improve functionality of nitric oxide (NO) pathways impaired by oxidative stress is a potential treatment of diabetic and chronic kidney disease. We report the pharmacology of BI 685509, a novel, orally active small molecule sGC activator with disease-modifying potential. BI 685509 and human sGC α1/ß1 heterodimer containing a reduced heme group produced concentration-dependent increases in cGMP that were elevated modestly by NO, whereas heme-free sGC and BI 685509 greatly enhanced cGMP with no effect of NO. BI 685509 increased cGMP in human and rat platelet-rich plasma treated with the heme-oxidant ODQ; respective EC50 values were 467 nM and 304 nM. In conscious telemetry-instrumented rats, BI 685509 did not affect mean arterial pressure (MAP) or heart rate (HR) at 3 and 10 mg/kg (p.o.), whereas 30 mg/kg decreased MAP and increased HR. Ten days of BI 685509 at supratherapeutic doses (60 or 100 mg/kg p.o., daily) attenuated MAP and HR responses to a single 100 mg/kg challenge. In the ZSF1 rat model, BI 685509 (1, 3, 10, and 30 mg/kg per day, daily) coadministered with enalapril (3 mg/kg per day) dose-dependently reduced proteinuria and incidence of glomerular sclerosis; MAP was modestly reduced at the higher doses versus enalapril. In the 7-day rat unilateral ureteral obstruction model, BI 685509 dose-dependently reduced tubulointerstitial fibrosis (P < 0.05 at 30 mg/kg). In conclusion, BI 685509 is a potent, orally bioavailable sGC activator with clear renal protection and antifibrotic activity in preclinical models of kidney injury and disease. SIGNIFICANCE STATEMENT: BI 685509 is a novel small soluble guanylate cyclase (sGC) molecule activator that exhibits an in vitro profile consistent with that of an sGC activator. BI 685509 reduced proteinuria and glomerulosclerosis in the ZSF1 rat, a model of diabetic kidney disease (DKD), and reduced tubulointerstitial fibrosis in a rat 7-day unilateral ureteral obstruction model. Thus, BI 685509 is a promising new therapeutic agent and is currently in phase II clinical trials for chronic kidney disease and DKD.


Asunto(s)
Insuficiencia Renal Crónica , Obstrucción Ureteral , Ratas , Humanos , Animales , Guanilil Ciclasa Soluble/metabolismo , Guanilato Ciclasa/metabolismo , Obstrucción Ureteral/patología , Riñón/metabolismo , Progresión de la Enfermedad , Proteinuria/tratamiento farmacológico , Fibrosis , Enalapril/uso terapéutico , Óxido Nítrico/metabolismo , GMP Cíclico/metabolismo
3.
Sci Rep ; 12(1): 19236, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357500

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects about 24% of the world's population. Progression of early stages of NAFLD can lead to the more advanced form non-alcoholic steatohepatitis (NASH), and ultimately to cirrhosis or liver cancer. The current gold standard for diagnosis and assessment of NAFLD/NASH is liver biopsy followed by microscopic analysis by a pathologist. The Kleiner score is frequently used for a semi-quantitative assessment of disease progression. In this scoring system the features of active injury (steatosis, inflammation, and ballooning) and a separated fibrosis score are quantified. The procedure is time consuming for pathologists, scores have limited resolution and are subject to variation. We developed an automated deep learning method that provides full reproducibility and higher resolution. The system was established with 296 human liver biopsies and tested on 171 human liver biopsies with pathologist ground truth scores. The method is inspired by the way pathologist's analyze liver biopsies. First, the biopsies are analyzed microscopically for the relevant histopathological features. Subsequently, histopathological features are aggregated to a per-biopsy score. Scores are in the identical numeric range as the pathologist's ballooning, inflammation, steatosis, and fibrosis scores, but on a continuous scale. Resulting scores followed a pathologist's ground truth (quadratic weighted Cohen's κ on the test set: for steatosis 0.66, for inflammation 0.24, for ballooning 0.43, for fibrosis 0.62, and for the NAFLD activity score (NAS) 0.52. Mean absolute errors on a test set: for steatosis 0.29, for inflammation 0.53, for ballooning 0.61, for fibrosis 0.78, and for the NAS 0.77).


Asunto(s)
Aprendizaje Profundo , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Reproducibilidad de los Resultados , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Biopsia , Fibrosis , Inflamación/patología , Índice de Severidad de la Enfermedad
4.
J Pharmacol Exp Ther ; 382(3): 266-276, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779860

RESUMEN

Diabetic nephropathy is a leading cause of end-stage renal disease, characterized by endothelial dysfunction and a compromised glomerular permeability barrier. Dysregulation of the angiopoietin 1 (ANGPT1)/angiopoietin 2 (ANGPT2) signaling axis is implicated in disease progression. We recently described the discovery of an IgG1 antibody, O010, with therapeutic potential to elevate circulating endogenous ANGPT1, a tyrosine kinase with Ig and epidermal growth factor (EGF) homology domains-2 (TIE2) agonist. Studies are described that detail the effect of various ANGPT1-elevating strategies to limit progression of renal dysfunction in diabetic-obese (db/db) mice. Results demonstrate that adeno-associated virus- or DNA minicircle-directed overexpression of ANGPT1 elicits a reduction in albuminuria (56%-73%) and an improvement in histopathology score (18% reduction in glomerulosclerosis). An improved acetylcholine response in isolated aortic rings was also observed indicative of a benefit on vascular function. In separate pharmacokinetic studies, an efficacious dose of the ANGPT1 DNA minicircle increased circulating levels of the protein by >80%, resulting in a concomitant suppression of ANGPT2. At a dose of O010-producing maximal elevation of circulating ANGPT1 achievable with the molecule (60% increase), no suppression of ANGPT2 was observed in db/db mice, suggesting insufficient pathway engagement; no reduction in albuminuria or improvement in histopathological outcomes were observed. To pinpoint the mechanism resulting in lack of efficacy, we demonstrate, using confocal microscopy, an interference with TIE2 translocation to adherens junctions, resulting in a loss of protection against vascular permeability normally conferred by ANGPT1. Results demonstrated the essential importance of ANGPT1 to maintain the glomerular permeability barrier, and, due to interference of O010 with this process, led to the discontinuation of the molecule for clinical development. SIGNIFICANCE STATEMENT: This body of original research demonstrates that elevation of systemic angiopoietin 1 (ANGPT1) is protective against diabetic nephropathy. However, using a novel biotherapeutic approach to elevate systemic ANGPT1 renoprotection was not observed; we demonstrate that protection was lost due to interference of the therapeutic with ANGPT1/ tyrosine kinase with Ig and EGF homology domains-2 translocation to adherens junctions. Thus, the clinical development of the antibody was terminated.


Asunto(s)
Angiopoyetina 1 , Diabetes Mellitus , Nefropatías Diabéticas , Albuminuria , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Factor de Crecimiento Epidérmico , Ratones , Ratones Obesos , Proteínas Tirosina Quinasas
5.
Proc Natl Acad Sci U S A ; 116(20): 10156-10161, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028142

RESUMEN

Transient receptor potential canonical type 6 (TRPC6) is a nonselective receptor-operated cation channel that regulates reactive fibrosis and growth signaling. Increased TRPC6 activity from enhanced gene expression or gain-of-function mutations contribute to cardiac and/or renal disease. Despite evidence supporting a pathophysiological role, no orally bioavailable selective TRPC6 inhibitor has yet been developed and tested in vivo in disease models. Here, we report an orally bioavailable TRPC6 antagonist (BI 749327; IC50 13 nM against mouse TRPC6, t1/2 8.5-13.5 hours) with 85- and 42-fold selectivity over the most closely related channels, TRPC3 and TRPC7. TRPC6 calcium conductance results in the stimulation of nuclear factor of activated T cells (NFAT) that triggers pathological cardiac and renal fibrosis and disease. BI 749327 suppresses NFAT activation in HEK293T cells expressing wild-type or gain-of-function TRPC6 mutants (P112Q, M132T, R175Q, R895C, and R895L) and blocks associated signaling and expression of prohypertrophic genes in isolated myocytes. In vivo, BI 749327 (30 mg/kg/day, yielding unbound trough plasma concentration ∼180 nM) improves left heart function, reduces volume/mass ratio, and blunts expression of profibrotic genes and interstitial fibrosis in mice subjected to sustained pressure overload. Additionally, BI 749327 dose dependently reduces renal fibrosis and associated gene expression in mice with unilateral ureteral obstruction. These results provide in vivo evidence of therapeutic efficacy for a selective pharmacological TRPC6 inhibitor with oral bioavailability and suitable pharmacokinetics to ameliorate cardiac and renal stress-induced disease with fibrosis.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Nefroesclerosis/tratamiento farmacológico , Canal Catiónico TRPC6/antagonistas & inhibidores , Animales , Evaluación Preclínica de Medicamentos , Fibrosis , Células HEK293 , Corazón/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Ratones
6.
PLoS One ; 11(6): e0156734, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27257917

RESUMEN

Renal interstitial fibrosis (IF) is an important pathologic manifestation of disease progression in a variety of chronic kidney diseases (CKD). However, the quantitative and reproducible analysis of IF remains a challenge, especially in experimental animal models of progressive IF. In this study, we compare traditional polarized Sirius Red morphometry (SRM) to novel Second Harmonic Generation (SHG)-based morphometry of unstained tissues for quantitative analysis of IF in the rat 5 day unilateral ureteral obstruction (UUO) model. To validate the specificity of SHG for detecting fibrillar collagen components in IF, co-localization studies for collagens type I, III, and IV were performed using IHC. In addition, we examined the correlation, dynamic range, sensitivity, and ability of polarized SRM and SHG-based morphometry to detect an anti-fibrotic effect of three different treatment regimens. Comparisons were made across three separate studies in which animals were treated with three mechanistically distinct pharmacologic agents: enalapril (ENA, 15, 30, 60 mg/kg), mycophenolate mofetil (MMF, 2, 20 mg/kg) or the connective tissue growth factor (CTGF) neutralizing antibody, EX75606 (1, 3, 10 mg/kg). Our results demonstrate a strong co-localization of the SHG signal with fibrillar collagens I and III but not non-fibrillar collagen IV. Quantitative IF, calculated as percent cortical area of fibrosis, demonstrated similar response profile for both polarized SRM and SHG-based morphometry. The two methodologies exhibited a strong correlation across all three pharmacology studies (r2 = 0.89-0.96). However, compared with polarized SRM, SHG-based morphometry delivered a greater dynamic range and absolute magnitude of reduction of IF after treatment. In summary, we demonstrate that SHG-based morphometry in unstained kidney tissues is comparable to polarized SRM for quantitation of fibrillar collagens, but with an enhanced sensitivity to detect treatment-induced reductions in IF. Thus, performing SHG-based morphometry on unstained kidney tissue is a reliable alternative to traditional polarized SRM for quantitative analysis of IF.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/patología , Animales , Anticuerpos Monoclonales/uso terapéutico , Compuestos Azo/química , Colágeno/química , Relación Dosis-Respuesta a Droga , Enalapril/uso terapéutico , Fibrosis , Masculino , Ácido Micofenólico/uso terapéutico , Colágenos no Fibrilares/química , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
7.
J Pharmacol Exp Ther ; 356(3): 712-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26729306

RESUMEN

Therapies that restore renal cGMP levels are hypothesized to slow the progression of diabetic nephropathy. We investigated the effect of BI 703704, a soluble guanylate cyclase (sGC) activator, on disease progression in obese ZSF1 rats. BI 703704 was administered at doses of 0.3, 1, 3, and 10 mg/kg/d to male ZSF1 rats for 15 weeks, during which mean arterial pressure (MAP), heart rate (HR), and urinary protein excretion (UPE) were determined. Histologic assessment of glomerular and interstitial lesions was also performed. Renal cGMP levels were quantified as an indicator of target modulation. BI 703704 resulted in sGC activation, as evidenced by dose-dependent increases in renal cGMP levels. After 15 weeks of treatment, sGC activation resulted in dose-dependent decreases in UPE (from 463 ± 58 mg/d in vehicle controls to 328 ± 55, 348 ± 23, 283 ± 45, and 108 ± 23 mg/d in BI 703704-treated rats at 0.3, 1, 3, and 10 mg/kg, respectively). These effects were accompanied by a significant reduction in the incidence of glomerulosclerosis and interstitial lesions. Decreases in MAP and increases in HR were only observed at the high dose of BI 703704. These results are the first demonstration of renal protection with sGC activation in a nephropathy model induced by type 2 diabetes. Importantly, beneficial effects were observed at doses that did not significantly alter MAP and HR.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/enzimología , Progresión de la Enfermedad , Activadores de Enzimas/farmacología , Guanilato Ciclasa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Enalaprilato/química , Enalaprilato/farmacología , Enalaprilato/uso terapéutico , Activadores de Enzimas/química , Activadores de Enzimas/uso terapéutico , Masculino , Ratas , Ratas Zucker , Guanilil Ciclasa Soluble
8.
Mol Ther ; 15(7): 1340-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17505483

RESUMEN

We have developed a one-plasmid regulated gene expression system, pBRES, based on a mifepristone (MFP)-inducible two-plasmid system. The various expression elements of the pBRES system (promoters, 5' and 3' untranslated regions (UTRs), introns, target gene, and polyA sequences) are bounded by restriction enzyme sites so that each module can be conveniently replaced by alternate DNA elements in order to tailor the system for particular tissues, organs, or conditions. There are four possible orientations of the two expression units relative to each other, and insertion of a variety of expression elements and target genes into the four different orientations revealed orientation- and gene-dependent effects on induced and uninduced levels of gene expression. Induced target gene expression from the pBRES system was shown to be comparable to the two-plasmid system and higher than the expression from the cytomegalovirus (CMV) promoter in vivo, while maintaining low uninduced levels of expression. Finally, a pBRES expression cassette was transferred to an adeno-associated virus (AAV) vector and shown to be capable of regulated gene expression in vivo for nearly 1 year.


Asunto(s)
Regulación de la Expresión Génica/genética , Plásmidos/genética , Animales , Dependovirus/genética , Vectores Genéticos/genética , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Transgenes/genética
9.
J Interferon Cytokine Res ; 26(7): 449-54, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16800783

RESUMEN

Experimental allergic encephalomyelitis (EAE) is a model of central nervous system (CNS) inflammation that follows immunization with certain CNS antigens. The course and clinical manifestations of EAE are similar to those of multiple sclerosis (MS) in humans; therefore, EAE has become an accepted animal model to study MS. The purpose of this study was to demonstrate that systemic expression of murine interferon-beta (IFN-beta) (MuIFN-beta), following intramuscular (i.m.) delivery of plasmid DNA encoding MuIFN-beta to the hind limb of mice, is effective in reducing the clinical manifestations of disease in a model of EAE. The results of the study demonstrate that gene-based delivery of MuIFN-beta caused significantly decreased clinical scores compared with delivery of the null vector. A single injection of the MuIFN-beta plasmid was as effective in reducing the severity of the disease as an every other day injection of MuIFN-beta protein.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Marcación de Gen , Terapia Genética , Interferón beta/biosíntesis , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Interferón beta/genética , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/terapia , Plásmidos/genética , Plásmidos/farmacología
10.
J Cardiovasc Pharmacol ; 47(4): 587-93, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16680073

RESUMEN

Morbidity and mortality of peripheral arterial occlusive disease significantly increases with age, often exhibiting more severe disease pathology and decreased treatment effectiveness. Therapeutic angiogenesis with angiogenic growth factors may represent a valuable treatment option for the severely ill, older adult patient population. Aging is considered an independent cardiovascular risk factor, but pathomechanistically it is not well understood. Diminished endothelial nitric oxide (EDNO) production has been considered as a major contributor to the aging process. To investigate the effect of age on postischemic revascularization independent of changes in EDNO, we used endothelial nitric oxide synthase-deficient (ecNOS-KO) mice. We found an age-dependent acceleration in ischemic injury following unilateral femoral artery ligation in these animals compared to C57BL/J6 mice. Postischemic revascularization, quantified by measuring von Willebrand factor expression, was significantly impaired, suggesting that factors other than progressive EDNO deterioration are also involved in the age-dependent severe disease phenotype. Ischemia led to an increase in the expression of vascular endothelial growth factor receptor-2, KDR, in younger ecNOS-KO; however, this increase in KDR expression was absent in the older animals. Lack of increased KDR expression may provide a mechanistic explanation for the severe ischemic injury and perhaps can be used as a clinical marker to identify severe, vascular endothelial growth factor refractory patient population.


Asunto(s)
Isquemia Miocárdica/fisiopatología , Óxido Nítrico Sintasa de Tipo III/deficiencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Envejecimiento , Animales , Endotelio Vascular/metabolismo , Arteria Femoral/fisiología , Expresión Génica/fisiología , Proteínas Hedgehog , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/fisiología , Necrosis , Óxido Nítrico/metabolismo , Óxido Nítrico/fisiología , Flujo Sanguíneo Regional/fisiología , Transactivadores/genética , Regulación hacia Arriba
11.
Proc Natl Acad Sci U S A ; 102(31): 10999-1004, 2005 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-16043715

RESUMEN

The genetic loss of endothelial-derived nitric oxide synthase (eNOS) in mice impairs vascular endothelial growth factor (VEGF) and ischemia-initiated blood flow recovery resulting in critical limb ischemia. This result may occur through impaired arteriogenesis, angiogenesis, or mobilization of stem and progenitor cells. Here, we show that after ischemic challenge, eNOS knockout mice [eNOS (-/-)] have defects in arteriogenesis and functional blood flow reserve after muscle stimulation and pericyte recruitment, but no impairment in endothelial progenitor cell recruitment. More importantly, the defects in blood flow recovery, clinical manifestations of ischemia, ischemic reserve capacity, and pericyte recruitment into the growing neovasculature can be rescued by local intramuscular delivery of an adenovirus encoding a constitutively active allele of eNOS, eNOS S1179D, but not a control virus. Collectively, our data suggest that endogenous eNOS-derived NO exerts direct effects in preserving blood flow, thereby promoting arteriogenesis, angiogenesis, and mural cell recruitment to immature angiogenic sprouts.


Asunto(s)
Isquemia/enzimología , Óxido Nítrico Sintasa/fisiología , Animales , Extremidades/irrigación sanguínea , Expresión Génica , Técnicas de Transferencia de Gen , Isquemia/patología , Isquemia/fisiopatología , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Neovascularización Patológica , Óxido Nítrico Sintasa/deficiencia , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico Sintasa de Tipo III , Pericitos/patología , Flujo Sanguíneo Regional
12.
J Gene Med ; 6(4): 395-404, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15079814

RESUMEN

BACKGROUND: Although the transient nature of transgene expression using first-generation adenovirus (Ad) vectors is well known, the exact mechanisms responsible for this phenomenon are uncertain. METHODS: Rats were given intramuscular (i.m.) injections of a first-generation Ad containing the human fibroblast growth factor 4 (hFGF-4) gene driven by the cytomegalovirus (CMV) promoter and enhancer (CMV-PE). The copy number of hFGF-4 mRNA and viral DNA was measured in the same muscles by quantitative RT-PCR and quantitative PCR at times between 1 h and 84 days after virus injection. Quantitative Southern blot analysis for the intact hFGF-4 transcription unit DNA was also performed, and the methylation status of the CMV-PE DNA in the muscle was determined using bisulfite sequencing. RESULTS: The copy number of hFGF-4 mRNA peaked at 6 h then decreased 56-fold by 24 h, and a further 240-fold between days 3 and 28. Although the viral DNA copy number also decreased 23-fold between 6 h and 28 days, the ratio of copies of hFGF-4 mRNA per copy of viral DNA decreased 385-fold over this period. Methylation of the CMV-PE DNA in the muscle at both CpG and non-CpG sites was observed 24 h after virus administration and had increased at day 7. CONCLUSIONS: Decreased transcription associated with extensive methylation of the CMV-PE was the major mechanism responsible for the decrease in transgene mRNA levels. Strategies for preventing transcriptional silencing will be valuable for improving the duration of transgene expression from adenoviral vectors.


Asunto(s)
Citomegalovirus/genética , Silenciador del Gen , Técnicas de Transferencia de Gen , Músculo Esquelético/fisiología , Regiones Promotoras Genéticas/genética , Animales , Islas de CpG , Metilación de ADN , Elementos de Facilitación Genéticos , Factor 4 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Inyecciones Intramusculares , Masculino , Proteínas Proto-Oncogénicas/genética , Ratas , Ratas Sprague-Dawley , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...