Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chin Med ; 19(1): 93, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956680

RESUMEN

Cardiovascular disease (CVD) remains the predominant cause of mortality and disability worldwide. Against this backdrop, finding effective drugs for the pharmacological treatment of CVD has become one of the most urgent and challenging issues in medical research. Garlic (Allium sativum L.) is one of the oldest plants and is world-renowned for its dietary and medicinal values. Allicin (diallyl thiosulfinate) is one of the primary natural active ingredients in garlic, which has been proven to have powerful cardioprotective effects and mediate various pathological processes related to CVD, such as inflammatory factor secretion, myocardial cell apoptosis, oxidative stress, and more. Therefore, allicin holds a promising application prospect in the treatment of CVD. This review summarized the biological functions of allicin and its potential mechanisms in CVD, including antioxidation, anti-inflammation, and anti-apoptosis effects. Reckoning with these, we delved into recent studies on allicin's cardioprotective effects concerning various CVDs, such as atherosclerosis, hypertension, myocardial infarction, arrhythmia, cardiac hypertrophy, heart failure, and cardiotoxicity. Further, considering the tremendous advancement in nanomedicine, nanotechnology-based drug delivery systems show promise in addressing limitations of allicin's clinical applications, including improving its solubility, stability, and bioavailability. Through this review, we hope to provide a reference for further research on allicin in cardioprotection and drug development.

2.
J Orthop Surg Res ; 19(1): 198, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528538

RESUMEN

PURPOSE: This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS: SW 1353 chondrosarcoma cells were stimulated with LPS (5 µg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS: The CCK-8 results showed that 10, 20 and 40 µM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1ß and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION: Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.


Asunto(s)
Condrosarcoma , Glucósidos Iridoides , Osteoartritis , Humanos , Condrocitos/metabolismo , Lipopolisacáridos/toxicidad , Osteoartritis/metabolismo , Sincalida/metabolismo , Sincalida/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hipertrofia , Condrosarcoma/tratamiento farmacológico , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo
3.
Chin J Integr Med ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987962

RESUMEN

OBJECTIVE: To identify whether Banxia Xiexin Decoction (BXD) alleviates cerebral glucose metabolism disorder by intestinal microbiota regulation in APP/PS1 mice. METHODS: Forty-five 3-month-old male APP/PS1 mice were divided into 3 groups using a random number table (n=15 per group), including a model group (MG), a liraglutide group (LG) and a BXD group (BG). Fifteen 3-month-old male C57BL/6J wild-type mice were used as the control group (CG). Mice in the BG were administered BXD granules by gavage at a dose of 6 g/(kg•d) for 3 months, while mice in the LG were injected intraperitoneally once daily with Liraglutide Injection (25 nmol/kg) for 3 months. Firstly, liquid chromatography with tandem-mass spectrometry was used to analyze the active components of BXD granules and the medicated serum of BXD. Then, the cognitive deficits, Aß pathological change and synaptic plasticity markers, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), were measured in APP/PS1 mice. Brain glucose uptake was detected by micropositron emission tomography. Intestinal microbial constituents were detected by 16S rRNA sequencing. The levels of intestinal glucagon-like peptide 1 (GLP-1) and cerebral GLP-1 receptor (GLP-1R), as well as the phosphoinositide-3-kinase/protein kinase B/glycogen synthase kinase-3ß (PI3K/Akt/GSK3ß) insulin signaling pathway were determined by immunohistochemical (IHC) staining and Western blot analysis, respectively. RESULTS: BXD ameliorated cognitive deficits and Aß pathological features (P<0.01). The expressions of SYP and PSD95 in the BG were higher than those in the MG (P<0.01). Brain glucose uptake in the BG was higher than that in the MG (P<0.01). The intestinal microbial composition in the BG was partially reversed. The levels of intestinal GLP-1 in the BG were higher than those in the MG (P<0.01). Compared with the MG, the expression levels of hippocampal GLP-1R, Akt, PI3K and p-PI3K in the BG were significantly increased (P<0.01), while the levels of GSK3ß were reduced (P<0.01). CONCLUSION: BXD exhibited protective effects against Alzheimer's disease by regulating the gut microbiota/GLP-1/GLP-1R, enhancing PI3K/Akt/GSK3ß insulin signaling pathway, and improving brain glucose metabolism.

4.
Front Immunol ; 14: 1198551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398674

RESUMEN

The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Redes Reguladoras de Genes , Agotamiento de Células T , Linfocitos T , Regulación de la Expresión Génica , Neoplasias/genética , Neoplasias/terapia
5.
Chin Med ; 16(1): 128, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857022

RESUMEN

BACKGROUND: Shen-Zhi-Ling oral liquid (SZL) is an herbal formula known for its efficacy of nourishing "heart and spleen", and is used for the treatment and prevention of middle- and early-stage dementia. This study investigated the effects of SZL on amelioration of AD, and examined whether the underlying mechanisms from the perspective of neuroprotection are related to brain glucose metabolism. METHODS: Firstly, LC-MS/MS was used to analysis the SZL mainly enters the blood component. Then, the effects of SZL on cognitive and behavioral ability of APP/PS1 double transgenic mice and amyloid protein characteristic pathological changes were investigated by behavioral study and morphological observation. The effects of SZL on the ultrastructure of mitochondria, astrocytes, and micrangium related to cerebral glucose metabolism were observed using transmission electron microscopy. Then, micro-PET was also used to observe the effects of SZL on glucose uptake. Furthermore, the effects of SZL on insulin signaling pathway InR/PI3K/Akt and glucose transporters (GLUT1 and GLUT3) were observed by immunohistochemistry, Western-blot and RT-qPCR. Finally, the effects of SZL on brain glucose metabolism and key enzyme were observed. In vitro, the use of PI3K and/or GSK3ß inhibitor to observe the effects of SZL drug-containing serum on GLUT1 and GLUT3. RESULTS: In vivo, SZL could significantly ameliorate cognitive deficits, retarded the pathological damage, including neuronal degeneration, Aß peptide aggregation, and ultrastructural damage of hippocampal neurons, improve the glucose uptake, transporters and glucolysis. Beyond that, SZL regulates the insulin signal transduction pathway the insulin signal transduction pathway InR/PI3K/Akt. Furthermore, 15% SZL drug-containing serum increased Aß42-induced insulin signal transduction-pathway related indicators and GLUT1 and GLUT3 expression in SH-SY5Y cells. The improvement of GLUT1 and GLUT3 in the downstream PI3K/Akt/GSK3ß signaling pathway was reversed by the use of PI3K and/or GSK3ß inhibitor. CONCLUSIONS: In summary, our results demonstrated that improving glucose uptake, transport, and glycolysis in the brain may underlie the neuroprotective effects of SZL, and its potential molecular mechanism may be related to regulate the insulin signal transduction pathway.

6.
3 Biotech ; 11(7): 361, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34295606

RESUMEN

Most forms of Alzheimer's disease are sporadic. A model of sporadic Alzheimer's disease induced with bilateral intraventricular injection of streptozotocin leads to insulin resistance in the brain accompanied by memory decline, synaptic dysfunction, amyloid plaque deposition, oxidative stress, and neuronal apoptosis, all of which mimic the pathologies associated with sporadic Alzheimer's disease. Myelin injury is an essential component of Alzheimer's disease, playing a key role in early cognitive impairment. Our previously research found that sporadic Alzheimer's disease model showed myelin injury and that Shenzheling oral solution improved mild-to-moderate Alzheimer's disease; therefore, the protective effect of Shenzheling oral solution on myelin injury in early cognitive impairment is worth attention. In this study, the Morris water maze test results showed impairments in the learning and memory functions of mice in the model group, whereas the learning and memory function significantly improved after drug intervention. Immunohistochemistry showed increased ß-amyloid plaques in the model group and decreased amounts in the drug group. Moreover, results of electron microscopy, western blot, and polymerase chain reaction showed that Shenzhiling oral solution improved early cognitive impairment and repaired myelin sheath damage; the potential mechanism of these effects may relate to the PI3K/Akt-mTOR signaling pathway. These findings support the application and promotion of Shenzhiling oral solution to treat sporadic Alzheimer's disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02900-x.

7.
J Ethnopharmacol ; 278: 114264, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34082015

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shenzhiling oral liquid (SZL), a traditional Chinese medicine (TCM) compound, is firstly approved by the Chinese Food and Drug Administration (CFDA) for the treatment of mild to moderate Alzheimer's disease (AD). SZL is composed of ten Chinese herbs, and the precise therapy mechanism of its action to AD is far from fully understood. AIM OF THE STUDY: The purpose of this study was to observe whether SZL is an effective therapy for amyloid-beta (Aß)-induced myelin sheath and oligodendrocytes impairments. Notably, the primary aim was to elucidate whether and through what underlying mechanism SZL protects the myelin sheath through the PI3K/Akt-mTOR signaling pathway in Aß42-induced OLN-93 oligodendrocytes in vitro. MATERIALS AND METHODS: APP/PS1 mice were treated with SZL or donepezil continuously for three months, and Aß42-induced oligodendrocyte OLN-93 cells mimicking AD pathogenesis of myelin sheath impairments were incubated with SZL-containing serum or with donepezil. LC-MS/MS was used to analysis the active components of SZL and SZL-containing serum. The Y maze test was administered after 3 months of treatment, and the hippocampal tissues of the APP/PS1 mice were then harvested for observation of myelin sheath and oligodendrocyte morphology. Cell viability and toxicity were assessed using CCK-8 and lactate dehydrogenase (LDH) release assays, and flow cytometry was used to measure cell apoptosis. The expression of the myelin proteins MBP, PLP, and MAG and that of Aß42 and Aß40 in the hippocampi of APP/PS1 mice were examined after SZL treatment. Simultaneously, the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR were also examined. The expression of proteins, including CNPase, Olig2, NKX2.2, MBP, PLP, MAG, MOG, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, was determined by immunofluorescence and Western blot, and the corresponding gene expression was evaluated by qPCR in Aß42-induced OLN-93 oligodendrocytes. RESULTS: LC-MS/MS detected a total of 126 active compounds in SZL-containing serum, including terpenoids, flavones, phenols, phenylpropanoids and phenolic acids. SZL treatment significantly improved memory and cognition in APP/PS1 mice and decreased the G-ratio of myelin sheath, alleviated myelin sheath and oligodendrocyte impairments by decreasing Aß42 and Aß40 accumulation and increasing the expression of myelin proteins MBP, PLP, MAG, and PI3K/Akt-mTOR signaling pathway associated protein in the hippocampi of APP/PS1 mice. SZL-containing serum also significantly reversed the OLN-93 cell injury induced by Aß42 by increasing cell viability and enhanced the expression of MBP, PLP, MAG, and MOG. Meanwhile, SZL-containing serum facilitated the maturation and differentiation of oligodendrocytes in Aß42-induced OLN-93 cells by heightening the expression of CNPase, Olig2 and NKX2.2. SZL-containing serum treatment also fostered the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, indicating an activating PI3K/Akt-mTOR signaling pathway in OLN-93 cells. Furthermore, the effects of SZL on myelin proteins, p-Akt, and p-mTOR were clearly inhibited by LY294002 and/or rapamycin, antagonists of PI3K and m-TOR, respectively. CONCLUSIONS: Our findings indicate that SZL exhibits a neuroprotective effect on the myelin sheath by promoting the expression of myelin proteins during AD, and its mechanism of action is closely related to the activation of the PI3K/Akt-mTOR signaling pathway.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores/farmacología , Administración Oral , Péptidos beta-Amiloides/metabolismo , Animales , Cromatografía Liquida , Cognición/efectos de los fármacos , Donepezilo/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Espectrometría de Masas en Tándem
9.
Artículo en Inglés | MEDLINE | ID: mdl-32774416

RESUMEN

White matter degeneration and demyelination are nonnegligible pathological manifestations of Alzheimer's disease (AD). The damage of myelin sheath consisting of oligodendrocytes is the basis of AD's unique early lesions. Shenzhiling oral liquid (SZL) was the effective Chinese herbal compound approved by the Food and Drug Administration (FDA) for the treatment of AD in China, which plays the exact therapeutic role in clinical AD patients. However, its molecular mechanism remains unclear to date. For this purpose, an in vitro mode of streptozotocin- (STZ-) induced rat oligodendrocyte OLN-93 cell injury was established to mimic the pathological changes of myelin sheath of AD and investigate the mechanism of SZL protecting injured OLN-93 cell. The results showed that STZ can decrease cell viability and downregulate the activity of PI3K/Akt-mTOR signalling pathway and the expression of myelin sheath-related proteins (MBP, MOG, and PLP) in OLN-93 cells. Both SZL-medicated serum and donepezil (positive control) can protect cells from STZ-caused damage. SZL-medicated serum increased OLN-93 cell viability in a dose- and time-dependent manner and enhanced the activity of PI3K/Akt-mTOR signalling pathway. The inhibitor of PI3K (LY294002) inhibited the protective effect of SZL-medicated serum on the STZ-injured OLN-93 cells. Furthermore, rapamycin, the inhibitor of mTOR, inhibited the promotion of cell viability and upregulation of p-mTOR and MBP caused by SZL-medicated serum. In conclusion, our data indicate that SZL plays its therapeutic role on AD by promoting PI3K/Akt-mTOR signalling pathway of oligodendrocytes. Thus, the present study may facilitate the therapeutic research of AD.

10.
Brain Behav ; 10(5): e01602, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32174034

RESUMEN

BACKGROUND: Cholinergic dysfunction and oxidative stress are the crucial mechanisms of Alzheimer's disease (AD). GAPT, also called GEPT (a combination of several active components extracted from the Chinese herbs ginseng, epimedium, polygala and tuber curcumae) or Jinsiwei, is a patented Chinese herbal compound, has been clinically widely used to improve learning and memory impairment, but whether it can play a neuroprotective role by protecting cholinergic neurons and reducing oxidative stress injury remains unclear. METHODS: Male ICR mice were intraperitoneally injected with scopolamine (3 mg/kg) to establish a learning and memory disordered model. An LC-MS method was established to study the chemical compounds and in vivo metabolites of GAPT. After scopolamine injection, a step-down passive-avoidance test (SDPA) and a Y maze test were used to estimate learning ability and cognitive function. In addition, ELISA detected the enzymatic activities of acetylcholinesterase (AChE), acetylcholine (ACh), choline acetyltransferase (ChAT), malondialdehyde (MDA), glutathione peroxidase (GPX), and total superoxide dismutase (T-SOD). The protein expressions of AChE, ChAT, SOD1, and GPX1 were observed by western blot, and the distribution of ChAT, SOD1, and GPX1 was observed by immunohistochemical staining. RESULTS: After one-half or 1 month of intragastric administration, GAPT can ameliorate scopolamine-induced behavioral changes in learning and memory impaired mice. It can also decrease the activity of MDA and protein expression level of AChE, increase the activity of Ach, and increase activity and protein expression level of ChAT, SOD, and GPX in scopolamine-treated mice. After one and a half month of intragastric administration of GAPT, echinacoside, salvianolic acid A, ginsenoside Rb1, ginsenoside Rg2, pachymic acid, and beta asarone could be absorbed into mice blood and pass through BBB. CONCLUSIONS: GAPT can improve the learning and memory ability of scopolamine-induced mice, and its mechanism may be related to protecting cholinergic neurons and reducing oxidative stress injury.


Asunto(s)
Hipocampo , Escopolamina , Animales , Colinérgicos , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo , Escopolamina/toxicidad
11.
Sci Rep ; 7(1): 4452, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28667269

RESUMEN

In this study, the properties of egg yolk oil (EYO) were investigated. Water extraction, dialysis, and ultrafiltration were used to extract and purify EYO, and microscopy, spectrophotometry, and chromatography were used to identify carbon dots (CDs) present in EYO (EYO CDs). Morphology analyses demonstrated that CDs were almost spherical, with an average size of <10 nm, a lattice spacing of 0.267 nm, and a composition of mainly C, O, and Fe. The solution showed bright blue fluorescence at 365 nm. Tail haemorrhaging and liver haemorrhaging experiments showed that CD-treated mice had significantly shorter bleeding times than did control mice. Coagulation assays suggested that EYO CDs stimulate the intrinsic blood coagulation system and activate the fibrinogen system. Thus, EYO CDs possess the ability to activate haemostasis, which may lead to further investigations of this ingredient of traditional Chinese medicine.


Asunto(s)
Carbono/química , Yema de Huevo/química , Hemostáticos/química , Hemostáticos/farmacología , Puntos Cuánticos/química , Animales , Hemostasis , Masculino , Ratones , Puntos Cuánticos/ultraestructura
12.
Int J Nanomedicine ; 12: 1927-1939, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28331316

RESUMEN

The unique features of quantum dots (QDs) make them desirable fluorescent tags for cell and developmental biology applications that require long-term, multitarget, and highly sensitive imaging. In this work, we imaged fluorescent cadmium telluride/zinc sulfide (CdTe/ZnS) QDs in organs, tissues, and cells, and analyzed the mechanism of their lymphatic uptake and cellular distribution. We observed that the fluorescent CdTe/ZnS QDs were internalized by lymph nodes in four cell lines from different tissue sources. We obtained the fluorescence intensity-QD concentrations curve by quantitative analysis. Our results demonstrate that cells containing QDs can complete mitosis normally and that distribution of QDs was uniform across cell types and involved the vesicular transport system, including the endoplasmic reticulum. This capacity for CdTe/ZnS QD targeting provides insights into the applicability and limitations of fluorescent QDs for imaging biological specimens.


Asunto(s)
Compuestos de Cadmio/química , Puntos Cuánticos/química , Sulfuros/química , Telurio/química , Compuestos de Zinc/química , Animales , Compuestos de Cadmio/toxicidad , Diagnóstico por Imagen , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Espacio Intracelular/metabolismo , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos BALB C , Micelas , Mitosis/efectos de los fármacos , Puntos Cuánticos/toxicidad , Puntos Cuánticos/ultraestructura , Células RAW 264.7 , Espectrometría de Fluorescencia , Sulfuros/toxicidad , Telurio/toxicidad , Distribución Tisular/efectos de los fármacos , Compuestos de Zinc/toxicidad
13.
Chin J Integr Med ; 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27220736

RESUMEN

OBJECTIVE: To determine the effects of different formulations of Banxia Xiexin Decoction ( , BXD) on the pharmacokinetics of baicalin (BAL) in mice. METHODS: Pungent, bitter, and sweet components of BXD (totaling 7 Chinese herbs) were formulated into the following groups: K (bitter herbs), XK (pungent and bitter herbs), KG (bitter and sweet herbs), and BXD (all 7 herbs) groups. These different formulations were administered intragastrically in mice, and blood was collected via the tail vein for continuous monitoring. BAL, which is a main active constituent in Scutellaria baicalensis Georgi., was detected in this study. Indirect competitive enzyme-linked immunosorbent assays (icELISAs) based on anti-BAL-monoclonal antibodies were employed to determine BAL concentrations in each group. RESULTS: The concentrations of BAL in blood samples from mice in the K and XK groups were lower than those in other groups. In all groups, BAL concentrations peaked at around 1-1.5 h and again at 5-7 h. There were no significant differences in the timing of peak BAL concentrations between groups. However, the peak concentrations and area under curve (AUC)0-36 h in the KG and BXD groups were almost 3 times of those in the K and XK groups. CONCLUSIONS: Differing compatibilities of BXD caused dissimilar pharmacokinetics of BAL. Moreover, we demonstrated a method for the continuous detection of blood concentrations of Chinese medicines in mice, and icELISA may be a feasible technique for the study of pharmcokinetic mechanisms of Chinese medicine.

14.
Biosens Bioelectron ; 81: 358-362, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26991602

RESUMEN

In this study, a rapid (within 10min) quantitative lateral-flow immunoassay using a quantum dots (QDs)-antibody probe was developed for the analysis of puerarin (PUE) in water and biological samples. The competitive immunoassay was based on anti-PUE monoclonal antibody conjugated with QDs (detection reagent). Secondary antibody was immobilized on one end of a nitrocellulose membrane (control line) and PUE-bovine serum albumin conjugate was immobilized on the other end (test line). In the quantitative experiment, the detection results were scanned using a membrane strip reader and a detection curve (regression equation: y=-0.11ln(x)+0.979, R(2)=0.9816) representing the averages of the scanned data was obtained. This curve was linear from 1 to 10µg/mL. The IC50 value was 75.58ng/mL and the qualitative detection limit of PUE was 5.8ng/mL. The recovery of PUE added to phosphate-buffered saline and biological samples was in the range of 97.38-116.56%. To our knowledge, this is the first report of the quantitative detection of a natural product by QDs-based immunochromatography, which represents a powerful tool for rapidly screening PUE in plant materials and other biological samples.


Asunto(s)
Anticuerpos Inmovilizados/química , Cromatografía de Afinidad/instrumentación , Fabaceae/química , Isoflavonas/análisis , Extractos Vegetales/química , Puntos Cuánticos/química , Animales , Anticuerpos Monoclonales/química , Técnicas Biosensibles/economía , Técnicas Biosensibles/instrumentación , Bovinos , Cromatografía de Afinidad/economía , Diseño de Equipo , Albúmina Sérica Bovina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...