Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(3): 1099-1106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37850826

RESUMEN

BACKGROUND: The push-pull strategy is considered as a promising eco-friendly method for pest management. Plant volatile organic compounds (PVOCs) act as semiochemicals constitute the key factor in implementing this strategy. Benzyl alcohol and geraniol, as functional PVOCs, were reported to regulate insect behavior, showing the potential application in pest control. Using geraniol as lead, a geraniol derivative 5i with fine repellent activity was discovered in our previous work. In order to explore novel, eco-friendly aphid control agents, a series of benzyl geranate derivatives was designed and synthesized using 5i as the lead and benzyl alcohol as the active fragment. RESULTS: Benzyl alcohol was firstly evaluated to have repellent activity to Acyrthosiphon pisum. Based on this repellent fragment, a series of novel benzyl geranate derivatives was rationally designed and synthesized using a scaffold-hopping strategy. Among them, compound T9, with a binding affinity (Kd = 0.43 µm) and a substantial repellency of 64.7% against A. pisum, is the most promising compound. Molecule docking showed that hydrophobic and hydrogen-bonding interactions substantially influenced the binding affinity of compounds with ApisOBP9. Additionally, T9 exhibited low-toxicity to honeybees and ladybugs. CONCLUSION: Using a simple scaffold-hopping strategy combined with active fragment benzyl alcohol, a new derivative T9, with high aphid-repellency and low-toxicity to nontarget organisms, can be considered as a novel potential eco-friendly aphid control agent for sustainable agriculture. © 2023 Society of Chemical Industry.


Asunto(s)
Áfidos , Repelentes de Insectos , Animales , Monoterpenos Acíclicos , Insectos , Alcoholes Bencílicos , Repelentes de Insectos/química
2.
iScience ; 26(11): 108115, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876794

RESUMEN

The alkaline phosphatases (ALPs) are highly promiscuous enzymes and have been extensively investigated in mammals for their medical significance, but their functional promiscuity is relatively poorly understood in insects. Here, we first identified four ALP genes (designated as MvALP1-4) in the vetch aphid Megoura viciae that contained one alkaline phosphatase site, three metal-binding sites, and varied other functional sites. Phylogenetic analysis, molecular docking and the spatiotemporal expression profiling of MvALP1-4 were very different, indicating a promiscuous functionality. We also found that MvALP4 involved the biosynthesis of aphid alarm pheromones (EßF) in vitro and in vivo. Finally, transcriptome analysis in the stimulated and unstimulated aphids supported the involvement of MvALPs in the biosynthesis of aphid alarm pheromones. Our study identified a multifunctional ALP involved terpene synthase enzyme activity in the aphid, which contributes to the understanding of the functional plasticity of ALPs in insects.

3.
Pest Manag Sci ; 79(2): 760-770, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36259292

RESUMEN

BACKGROUND: Aphids have been mainly controlled by traditional chemical insecticides, resulting in unamiable risk to the environment over the last decades. Push-pull strategy is regarded as a promising eco-friendly approach for aphid management through repelling aphid away and attracting their natural enemy. Methyl salicylate (MeSA), one of typical HIPVs (herbivore-induced plant volatiles), can repel aphids and attract ladybugs. Our previous studies discovered a new lead compound 3e, a salicylate-substituted carboxyl (E)-ß-farnesene derivative that had effective aphid-repellent activity. However, whether 3e has attractive activity to ladybug like MeSA is unknown. Meanwhile, to discover a new derivative for both deterring aphid and recruiting ladybug is meaningful for green control of aphids. RESULTS: Through the structural optimization of 3e, 14 new derivatives were designed and synthesized. Among them, compounds 4e and 4i had good aphid (Acyrthosiphon pisum) repellent activity, and compounds 3e, 4e and 4i had significant ladybug (Harmonia axyridis) attractive activity to males. Particularly, 4i exhibited manifest attractive effect on the females as well. Binding mechanism showed that 4i not only bound effectively with the aphid (Acyrthosiphon pisum) target ApisOBP9 thanks to its multiple hydrophobic interactions and hydrogen-bond, but also had strong binding affinity with ladybug target HaxyOBP15 due to the suitable steric space. Additionally, 4i displayed low toxicity to bee Apis mellifera. CONCLUSION: Compound 3e does exhibit attractive activity to male ladybug as MeSA. However, the new derivative 4i, with both pleasant aphid-repellent and ladybug-attraction activities, can be considered as a novel potential push-pull candidate for aphid control in sustainable agriculture. © 2022 Society of Chemical Industry.


Asunto(s)
Áfidos , Escarabajos , Repelentes de Insectos , Animales , Abejas , Áfidos/metabolismo , Salicilatos/farmacología , Salicilatos/metabolismo , Monoterpenos Acíclicos/farmacología , Repelentes de Insectos/farmacología
4.
Insect Mol Biol ; 32(3): 229-239, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36533988

RESUMEN

Farnesyl/geranylgeranyl diphosphate synthases (FPPS/GGPPS) as the short-chain prenyltransferases catalyse the formation of the acyclic precursors (E)-FPP and (E)-GGPP for isoprenoid biosynthesis. Here, we first cloned the cDNAs encoding FPPS and GGPPS in the vetch aphid Megoura viciae (designated as MvFPPS and MvGGPPS). They had an open reading frame of 1185 and 930 bp in length, encoding 395 and 309 amino acids, with a theoretical isoelectric point of 6.52 and 6.21, respectively. Sequence alignment and phylogenetic analysis showed that MvFPPS and MvGGPPS shared the conserved aspartate-rich motifs characterized by all prenyltransferases identified to date and were clustered with their homologues in two large clades. RNA interference (RNAi) combined with gas chromatography/mass spectrometry (GC-MS) analysis showed that both MvFPPS and MvGGPPS were involved in the biosynthesis of alarm pheromone. Spatiotemporal expression profiling showed that the expression of MvFPPS and MvGGPPS was significantly higher in embryos than in other tissues. RNAi and GC-MS performed specifically in embryos corroborated the function of MvFPPS and MvGGPPS. In vitro, enzymatic activity assay and product analysis demonstrated that MvFPPS could catalysed the formation of (E)-FPP using DMAPP or (E)-GPP as the allylic cosubstrates in the presence of IPP, while MvGGPPS could only use (E)-GPP or (E)-FPP as cosubstrates. Functional interaction analysis using RNAi revealed that MvGGPPS exerts unidirectional functional compensation for MvFPPS. Moreover, it can regulate the biosynthesis of alarm pheromone by imposing a negative feedback regulation on MvFPPS. Our study helps to understand the molecular regulatory mechanism of terpenoid biosynthesis in the aphid.


Asunto(s)
Áfidos , Geraniltranstransferasa , Animales , Geraniltranstransferasa/genética , Geraniltranstransferasa/química , Geraniltranstransferasa/metabolismo , Áfidos/metabolismo , Feromonas , Filogenia
5.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35775933

RESUMEN

Neotoxoptera formosana (Takahashi), the onion aphid, is an oligophagous pest that mainly feeds on plants from the Allium genus. It sucks nutrients from the plants and indirectly acts as a vector for plant viruses. This aphid causes severe economic losses to Allium tuberosum agriculture in China. To better understand the host plant specificity of N. formosana on Allium plants and provide essential information for the control of this pest, we generated the entire genome using Pacific Biosciences long-read sequencing and Hi-C data. Six chromosomes were assembled to give a final size of 372.470 Mb, with an N50 scaffold of 66.911 Mb. The final draft genome assembly, from 192 Gb of raw data, was approximately 371.791 Mb in size, with an N50 contig of 24.99 Kb and an N50 scaffold of 2.637 Mb. The average GC content was 30.96%. We identified 73 Mb (31.22%) of repetitive sequences, 14,175 protein-coding genes, and 719 noncoding RNAs. The phylogenetic analysis showed that N. formosana and Pentalonia nigronervosa are sister groups. We found significantly expanded gene families that were involved in the THAP domain, the DDE superfamily endonuclease, zinc finger, immunity (ankyrin repeats), digestive enzyme (serine carboxypeptidase) and chemosensory receptor. This genome assembly could provide a solid foundation for future studies on the host specificity of N. formosana and pesticide-resistant aphid management.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Cromosomas , Genoma , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
6.
J Chem Ecol ; 47(8-9): 740-746, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34347235

RESUMEN

Aphids are destructive pests, and alarm pheromones play a key role in their chemical ecology. Here, we conducted a detailed analysis of terpenoids in the vetch aphid, Megoura viciae, and its host plant Pisum sativum using gas chromatography/mass spectrometry. Four major components, (-)-ß-pinene (49.74%), (E)-ß-farnesene (32.64%), (-)-α-pinene (9.42%) and ( +)-limonene (5.24%), along with trace amounts of ( +)-sabinene, camphene and α-terpineol) (3.14%) were found in the aphid. In contrast, few terpenoids were found in the host plant, consisting mainly of squalene (66.13%) and its analog 2,3-epoxysqualene (31.59%). Quantitative analysis of the four major terpenes in different developmental stages of the aphid showed that amounts of the monoterpenes increased with increasing stage, while the sesquiterpene amount peaked in the 3rd instar. (-)-ß-Pinene was the most abundant terpene at all developmental stages. Behavioral assays using a three-compartment olfactometer revealed that the repellency of single compounds varied in a concentration-dependent manner, but two mixtures [(-)-α-pinene: (-)-ß-pinene: (E)-ß-farnesene: ( +)-limonene = 1:44.4:6.5:2.2 or 1:18.4:1.3:0.8], were repellent at all concentrations tested. Our results suggest that (-)-α-pinene and (-)-ß-pinene are the major active components of the alarm pheromone of M. viciae, but that mixtures play a key role in the alarm response. Our study contributes to the understanding of the chemical ecology of aphids and may help design new control strategies against this aphid pest.


Asunto(s)
Áfidos/fisiología , Feromonas/química , Pisum sativum/química , Terpenos/química , Animales , Áfidos/química , Áfidos/crecimiento & desarrollo , Conducta Animal/efectos de los fármacos , Monoterpenos Bicíclicos/aislamiento & purificación , Monoterpenos Bicíclicos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Control de Insectos/métodos , Estadios del Ciclo de Vida , Pisum sativum/metabolismo , Pisum sativum/parasitología , Feromonas/análisis , Feromonas/farmacología , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Terpenos/análisis , Terpenos/farmacología
7.
Pest Manag Sci ; 76(7): 2465-2472, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32061021

RESUMEN

BACKGROUND: The aphid alarm pheromone, (E)-ß-farnesene (EßF), is a natural product secreted from the aphid cornicle as a signal to warn companions of danger. Odorant binding proteins (OBPs) are the vital targets in insect signal transduction pathways. To improve bioactivity of EßF as more economic and stable aphid control agents, EßF derivatives containing an active substructure, salicylic acid moiety, were designed, synthesized, and evaluated for their bioactivities in a structure-function study under laboratory conditions. RESULTS: EßF derivatives, (E)-3,7-dimethylocta-2,6-dien-1-yl-2-hydroxy-3-methylbenzoate and (E)-3,7-dimethylocta-2,6-dien-1-yl-2-hydroxy-3-methoxybenzoate showed outstanding aphid-repellent activity at a dose of 5 µg against Acyrthosiphon pisum (repellency proportions of 67.3% and 71.2%, respectively) and Myzus persicae (repellency proportions of 80.0% and 74.4%, respectively) in laboratory. EßF and most of its derivatives bound strongly to ApisOBP9 with a higher affinity than those of the reported potential targets AphisOBP3 and ApisOBP7. The binding affinities to these three ApisOBPs were generally consistent with the in vivo aphid-repellent activity. A molecular docking study suggested that the hydrophobic effect was crucial for the interactions between the derivatives and the OBPs. CONCLUSION: New EßF derivatives containing salicylic acid moiety and their repellent activity, binding mechanism with three potential OBPs are presented. A new OBP, ApisOBP9, was characterized as a potential EßF and EßF derivatives binding protein for the first time. The hydrophobic nature of these analogues is responsible for their activity. Two analogues 3b and 3e with outstanding aphid-repellent activity could be new leads for aphid control agents.


Asunto(s)
Áfidos , Agroquímicos , Animales , Simulación del Acoplamiento Molecular , Feromonas , Ácido Salicílico , Sesquiterpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA