Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493715

RESUMEN

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Asunto(s)
Alcaloides , Pollos , Coccidiosis , Eimeria , Matrinas , Enfermedades de las Aves de Corral , Quinolizinas , Vía de Señalización Wnt , Animales , Quinolizinas/farmacología , Alcaloides/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Eimeria/efectos de los fármacos , Coccidiosis/tratamiento farmacológico , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/parasitología , Células Madre/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/parasitología
2.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119431, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36632926

RESUMEN

During heat stress (HS), the intestinal epithelium suffers damage due to imbalance of tissue homeostasis. However, the specific mechanism by which intestinal stem cells (ISCs) migrate and differentiate along the crypt-villus axis to heal lesions upon insult is unclear. In our study, C57BL/6 mice and IPEC-J2 cells were subjected to normal ambient conditions (25 °C for 7 days in vivo and 37 °C for 18 h in vitro) or 41 °C. The results showed that HS impaired intestinal morphology and barrier function. The numbers of ISCs (SOX9+ cells), mitotic cells (PCNA+ cells), and differentiated cells (Paneth cells marked by lysozyme, absorptive cells marked by Villin, goblet cells marked by Mucin2, enteroendocrine cells marked by Chromogranin A, and tuft cells marked by DCAMKL1) were reduced under high temperature. Importantly, BrdU incorporation confirmed the decreased migration ability of jejunal epithelial cells exposed to 41 °C. Furthermore, intestinal organoids (IOs) expanded from jejunal crypt cells in the HS group exhibited greater growth disadvantages. Mechanistically, the occurrence of these phenotypes was accompanied by FAK/paxillin/F-actin signaling disruption in the jejunum. The fact that the FAK agonist ZINC40099027 reversed the HS-triggered inhibition of IPEC-J2 cell differentiation and migration further confirmed the dominant role of FAK in response to high-temperature conditions. Overall, the present investigation is the first to reveal a major role of FAK/paxillin/F-actin signaling in HS-induced ISC migration and differentiation along the crypt-villus axis, which indicates a new therapeutic target for intestinal epithelial regeneration after heat injuries.


Asunto(s)
Actinas , Mucosa Intestinal , Animales , Ratones , Actinas/metabolismo , Diferenciación Celular , Movimiento Celular , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Paxillin/metabolismo , Células Madre/metabolismo
3.
Cell Mol Life Sci ; 79(10): 523, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121491

RESUMEN

Intestinal stem cells (ISCs) decode and coordinate various types of nutritional information from the diet to support the crypt-villus axis architecture, but how specific dietary molecules affect intestinal epithelial homeostasis remains unclear. In the current study, L-glutamate (Glu) supplementation in either a nitrogen-free diet (NFD) or a corn-soybean meal diet (CSMD) stimulated gut growth and ISC expansion in weaned piglets. Quantitative proteomics screening identified the canonical Wnt signalling pathway as a central regulator of intestinal epithelial development and ISC activity in vivo. Importantly, the Wnt transmembrane receptor Frizzled7 (FZD7) was upregulated in response to dietary Glu patterns, and its perturbations in intestinal organoids (IOs) treated with a specific inhibitor and in FZD7-KO IPEC-J2 cells disrupted the link between Glu inputs and ß-catenin signalling and a subsequent reduction in cell viability. Furthermore, co-localization, coimmunoprecipitation (Co-IP), isothermal titration calorimetry (ITC), and microscale thermophoresis (MST) revealed that Glu served as a signalling molecule directly bound to FZD7. We propose that FZD7-mediated integration of the extracellular Glu signal controls ISC proliferation and differentiation, which provides new insights into the crosstalk of nutrients and ISCs.


Asunto(s)
Ácido Glutámico , beta Catenina , Animales , Proliferación Celular , Ácido Glutámico/metabolismo , Células Madre , Porcinos , Vía de Señalización Wnt , beta Catenina/metabolismo
4.
Mol Nutr Food Res ; 65(17): e2100406, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216418

RESUMEN

SCOPE: The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS: In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION: The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.


Asunto(s)
Carnosina/farmacología , Intestinos/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/citología , Intestinos/metabolismo , Intestinos/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo
5.
Food Funct ; 11(3): 2714-2724, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32163057

RESUMEN

l-Glutamate (Glu) is a nutritionally functional amino acid for pigs. In addition, intestinal stem cells (ISCs) maintain epithelial renewal and homeostasis by dynamically regulating proliferation and differentiation to cope with environmental cues. The rapid renewal of the intestinal epithelium requires a continuous supply of energy sources such as Glu. However, the effects of Glu on ISCs and epithelial renewal are poorly understood. In this study, we found that dietary Glu accelerated intestinal epithelial renewal and gut growth. The epidermal growth factor receptor (EGFR)/extracellular regulated protein kinase (ERK) pathway and mechanistic target of rapamycin complex 1 (mTORC1) signaling were involved in this response in piglets. Subsequent cellular assessment suggested that the EGFR/ERK pathway was upstream of Glu-induced mTORC1 signaling activation. Furthermore, we found that Glu activated the EGFR/ERK pathway and promoted ISC proliferation and differentiation in porcine intestinal organoids. Collectively, our findings suggest that Glu drives intestinal epithelial renewal by increasing ISC activity via the EGFR/ERK/mTORC1 pathway. The present study provides direct evidence that mTORC1 is activated by extracellular Glu through EGFR and that Glu acts as a nutritionally functional amino acid for piglets to maintain intestinal growth and health.


Asunto(s)
Ácido Glutámico/farmacología , Mucosa Intestinal , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Porcinos
6.
BMC Urol ; 19(1): 106, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684918

RESUMEN

BACKGROUND: Bilateral adrenal hemorrhage (BAH) is a rare but potentially catastrophic condition. Its clinical manifestation is often non-specific and sometimes difficult to be diagnosed in time. A 57-year-old woman, who presented with severe fatigue, nausea and vomiting after left hip arthroplasty due to her femoral neck fracture in a local hospital, was transferred to our medical center. Laboratory results revealed significant hyponatremia, low serum cortisol and elevated serum ACTH. Computed tomography (CT) showed a bilateral adrenal mass, measured 3.6 × 2.7 cm on the left and 3.4 × 2.3 cm on the right. Further magnetic resonance imaging (MRI) confirmed the diagnosis of BAH. The patient was prescribed with oral prednisolone acetate, 5 mg, tid, and her condition improved gradually. Nine months after, the patient was in good condition with 5 mg prednisolone acetate per day. CT revealed a clearly shrunken adrenal mass compared with 9 months ago. CONCLUSIONS: This case illustrates the difficulty in making the diagnosis of BAH with atypical presentation. Such cases necessitate greater alertness on the part of the clinician and require rapid diagnosis and prompt glucocorticoid replacement for better clinical outcomes.


Asunto(s)
Enfermedades de las Glándulas Suprarrenales/diagnóstico , Artroplastia de Reemplazo de Cadera , Hemorragia/diagnóstico , Complicaciones Posoperatorias/diagnóstico , Enfermedades de las Glándulas Suprarrenales/patología , Errores Diagnósticos , Femenino , Hemorragia/patología , Humanos , Persona de Mediana Edad
7.
J Agric Food Chem ; 67(34): 9510-9521, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31382738

RESUMEN

Glutamate (Glu) is a critical nutritional regulator of intestinal epithelial homeostasis. In addition, intestinal stem cells (ISCs) at crypt bases are known to play important roles in maintaining the renewal and homeostasis of the intestinal epithelium, and the aspects of communication between Glu and ISCs are still unknown. Here, we identify Glu and mammalian target of rapamycin complex 1 (mTORC1) as essential regulators of ISC expansion. The results showed that extracellular Glu promoted ISC expansion, indicated by increased intestinal organoid forming efficiency and budding efficiency as well as cell proliferation marker Ki67 immunofluorescence and differentiation marker Keratin 20 (KRT20) expression. Moreover, the insulin receptor (IR) mediating phosphorylation of the insulin receptor substrate (IRS) and downstream signaling phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was involved in this response in ISCs. As expected, Glu-induced mTORC1 signaling activation was observed in the intestinal porcine enterocyte cell line (IPEC-J2), and Glu activated the PI3K/Akt/mTORC1 pathway. Accordingly, PI3K inhibition partially suppressed Glu-induced mTORC1 activation. In addition, Glu increased the phosphorylation levels of IR and IRS, and inhibiting IR downregulated the IRS/PI3K/Akt pathway. Collectively, our findings first indicate that extracellular Glu activates mTORC1 via the IR/IRS/PI3K/Akt pathway and stimulates ISC expansion, providing a new perspective for regulating the growth and health of the intestinal epithelium.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Células Madre/metabolismo , Animales , Proteínas Sustrato del Receptor de Insulina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Receptor de Insulina/genética , Transducción de Señal , Porcinos
8.
J Cell Physiol ; 234(10): 19028-19038, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30937902

RESUMEN

The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.


Asunto(s)
Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Chaperonina 60/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Calor/efectos adversos , Mucosa Intestinal/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/agonistas , Transducción de Señal/fisiología , Porcinos , Ubiquitina/metabolismo
9.
Can Urol Assoc J ; 9(9-10): E683-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26425243

RESUMEN

Fungus ball and fungal emphysematous cystitis are two rare complications of fungal urinary tract infection. A 53-year-old male patient presented with these complications caused by Candida tropicalis simultaneously. The predisposing factors were diabetes mellitus and usage of broad-spectrum antibiotics. The fungus ball, measuring 3.5 × 2.0 cm on the left wall of the urinary bladder, shrank significantly to 1.6 × 0.8 cm after 5 days of intermittent irrigation with saline before surgery. With transurethral removal of the fungus ball and antifungal treatment with fluconazole, the patient fully recovered. We conclude that a bladder fungus ball and fungal emphysematous cystitis should always be suspected in patients with diabetes mellitus with uncontrolled funguria and abnormal imaging. Treatment should include a systemic antifungal therapy and thorough surgical removal of the fungus ball. A systemic antifungal therapy combined with a local irrigation with saline or antifungal drugs might help decrease the dissemination of fungemia during an invasive manipulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA