Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Biochem Biophys Res Commun ; 731: 150360, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39018970

RESUMEN

Exercise is known to be an effective intervention for depression. NADPH has been demonstrated to have neuroprotective effects in our previous studies. This study aimed to investigate if NADPH has antidepressant effects and can mimic the effects of exercise in a chronic unpredictable stress (CUS) rat model. CUS rats underwent an 8-week swimming exercise (30 min/d, 5d/w) or were intraperitoneally administered 4 mg/kg or 8 mg/kg NADPH. The open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), and forced swimming test (FST) were used to examine the antidepressant-like behaviors of the rats. Exercise, 4 mg/kg, and 8 mg/kg NADPH similarly reduced anxiety, as demonstrated by the number of fecal pellets. Meanwhile, exercise and 8 mg/kg NADPH significantly increased locomotion activity in the OFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH effectively reversed CUS-induced anhedonia in rats in the SPT. Exercise, 4 mg/kg, and 8 mg/kg NADPH had no impact on appetite of depressed rats; however, 8 mg/kg NADPH increased the rats' exploratory activity in the NSFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH significantly reduced the immobility time of CUS model rats, while exercise and 8 mg/kg NADPH postponed the early CUS-induced "immobility" in the FST. These results demonstrated that NADPH has similar antidepressant-like effects to exercise in CUS-induced depression model rats and is a potential exercise-mimicking antidepressant.

2.
Mol Neurobiol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981960

RESUMEN

Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.

3.
Acta Pharmacol Sin ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750074

RESUMEN

Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.

4.
Biomed Pharmacother ; 175: 116689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703508

RESUMEN

Ischemic heart disease invariably leads to devastating damage to human health. Nicotinamide ribose (NR), as one of the precursors of NAD+ synthesis, has been discovered to exert a protective role in various neurological and cardiovascular disorders. Our findings demonstrated that pretreatment with 200 mg/kg NR for 3 h significantly reduced myocardial infarct area, decreased levels of CK-MB and LDH in serum, and improved cardiac function in the rats during myocardial ischemia-reperfusion (I/R) injury. Meanwhile, 0.5 mM NR also effectively increased the viability and decreased the LDH release of H9c2 cells during OGD/R. We had provided evidence that NR pretreatment could decrease mitochondrial reactive oxygen species (mtROS) production and MDA content, and enhance SOD activity, thereby mitigating mitochondrial damage and inhibiting apoptosis during myocardial I/R injury. Further investigations revealed that NR increased NAD+ content and upregulated SIRT3 protein expression in myocardium. Through using of SIRT3 small interfering RNA and the SIRT3 deacetylase activity inhibitor 3-TYP, we had confirmed that the cardioprotective effect of NR on cardiomyocytes was largely dependent on the inhibition of mitochondrial oxidative stress via SIRT3-SOD2 axis. Overall, our study suggested that exogenous supplementation with NR mitigated mitochondrial damage and inhibited apoptosis during myocardial I/R injury by reducing mitochondrial oxidative stress via SIRT3-SOD2-mtROS pathway.


Asunto(s)
Apoptosis , Daño por Reperfusión Miocárdica , Niacinamida , Estrés Oxidativo , Compuestos de Piridinio , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 3 , Superóxido Dismutasa , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Sirtuina 3/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Niacinamida/farmacología , Niacinamida/análogos & derivados , Superóxido Dismutasa/metabolismo , Ratas , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Compuestos de Piridinio/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Cardiotónicos/farmacología , Sirtuinas
5.
Redox Biol ; 73: 103176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705094

RESUMEN

Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.


Asunto(s)
Ferroptosis , NADP , Humanos , NADP/metabolismo , Animales , Aciltransferasas/metabolismo , Aciltransferasas/genética , Ratones , Procesamiento Proteico-Postraduccional
6.
Autophagy ; : 1-21, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686804

RESUMEN

Obesity is one of the most common metabolic diseases around the world, which is distinguished by the abnormal buildup of triglycerides within adipose cells. Recent research has revealed that autophagy regulates lipid mobilization to maintain energy balance. TIGAR (Trp53 induced glycolysis regulatory phosphatase) has been identified as a glycolysis inhibitor, whether it plays a role in the metabolism of lipids is unknown. Here, we found that TIGAR transgenic (TIGAR+/+) mice exhibited increased fat mass and trended to obesity phenotype. Non-target metabolomics showed that TIGAR caused the dysregulation of the metabolism profile. The quantitative transcriptome sequencing identified an increased levels of LRRK2 and RAB7B in the adipose tissue of TIGAR+/+ mice. It was confirmed in vitro that TIGAR overexpression increased the levels of LRRK2 by inhibiting polyubiquitination degradation, thereby suppressing macroautophagy and chaperone-mediated autophagy (CMA) while increasing lipid accumulation which were reversed by the LRRK2 inhibitor DNL201. Furthermore, TIGAR drove LRRK2 to interact with RAB7B for suppressing lysosomal degradation of lipid droplets, while the increased lipid droplets in adipocytes were blocked by the RAB7B inhibitor ML282. Additionally, fat-specific TIGAR knockdown of TIGAR+/+ mice alleviated the symptoms of obesity, and adipose tissues-targeting superiority DNL201 nano-emulsion counteracted the obesity phenotype in TIGAR+/+ mice. In summary, the current results indicated that TIGAR performed a vital function in the lipid metabolism through LRRK2-mediated negative regulation of macroautophagy and CMA in adipocyte. The findings suggest that TIGAR has the potential to serve as a viable therapeutic target for treating obesity and its associated metabolic dysfunction.

7.
Free Radic Biol Med ; 216: 89-105, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494143

RESUMEN

Ischemia Stroke (IS) is an acute neurological condition with high morbidity, disability, and mortality due to a severe reduction in local cerebral blood flow to the brain and blockage of oxygen and glucose supply. Oxidative stress induced by IS predisposes neurons to ferroptosis. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits the intracellular glycolytic pathway to increase pentose phosphate pathway (PPP) flux, promotes NADPH production and thus generates reduced glutathione (GSH) to scavenge reactive oxygen species (ROS), and thus shows strong antioxidant effects to ameliorate cerebral ischemia/reperfusion injury. However, in the current study, prolonged ischemia impaired the PPP, and TIGAR was unable to produce NADPH but was still able to reduce neuronal ferroptosis and attenuate ischemic brain injury. Ferroptosis is a form of cell death caused by free radical-driven lipid peroxidation, and the vast majority of ROS leading to oxidative stress are generated by mitochondrial succinate dehydrogenase (SDH) driving reverse electron transfer (RET) via the mitochondrial electron transport chain. Overexpression of TIGAR significantly inhibited hypoxia-induced enhancement of SDH activity, and TIGAR deficiency further enhanced SDH activity. We also found that the inhibitory effect of TIGAR on SDH activity was related to its mitochondrial translocation under hypoxic conditions. TIGAR may inhibit SDH activity by mediating post-translational modifications (acetylation and succinylation) of SDH A through interaction with SDH A. SDH activity inhibition reduces neuronal ferroptosis by decreasing ROS production, eliminating MitoROS levels and attenuating lipid peroxide accumulation. Notably, TIGAR-mediated inhibition of SDH activity and ferroptosis was not dependent on the PPP-NADPH-GPX4 pathways. In conclusion, mitochondrial translocation of TIGAR in prolonged ischemia is an important pathway to reduce neuronal ferroptosis and provide sustainable antioxidant defense for the brain under prolonged ischemia, further complementing the mechanism of TIGAR resistance to oxidative stress induced by IS.


Asunto(s)
Isquemia Encefálica , Ferroptosis , Daño por Reperfusión , Humanos , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , NADP/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Infarto Cerebral/metabolismo , Glucólisis , Daño por Reperfusión/metabolismo , Hipoxia/metabolismo , Neuronas/metabolismo
8.
Cell Commun Signal ; 22(1): 98, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317235

RESUMEN

NRAS mutations are most frequently observed in hematological malignancies and are also common in some solid tumors such as melanoma and colon cancer. Despite its pivotal role in oncogenesis, no effective therapies targeting NRAS has been developed. Targeting NRAS localization to the plasma membrane (PM) is a promising strategy for cancer therapy, as its signaling requires PM localization. However, the process governing NRAS translocation from the Golgi apparatus to the PM after lipid modification remains elusive. This study identifies GOLGA7 as a crucial factor controlling NRAS' PM translocation, demonstrating that its depletion blocks NRAS, but not HRAS, KRAS4A and KRAS4B, translocating to PM. GOLGA7 is known to stabilize the palmitoyltransferase ZDHHC9 for NRAS and HRAS palmitoylation, but we found that GOLGA7 depletion does not affect NRAS' palmitoylation level. Further studies show that loss of GOLGA7 disrupts NRAS anterograde trafficking, leading to its cis-Golgi accumulation. Remarkably, depleting GOLGA7 effectively inhibits cell proliferation in multiple NRAS-mutant cancer cell lines and attenuates NRASG12D-induced oncogenic transformation in vivo. These findings elucidate a specific intracellular trafficking route for NRAS under GOLGA7 regulation, highlighting GOLGA7 as a promising therapeutic target for NRAS-driven cancers.


Asunto(s)
Lipoilación , Transducción de Señal , Membrana Celular/metabolismo , Línea Celular , Mutación , Aparato de Golgi/metabolismo
9.
Neurosci Bull ; 40(3): 363-382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37856037

RESUMEN

Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Autofagia/fisiología , Enfermedad de Parkinson/metabolismo
10.
EBioMedicine ; 98: 104863, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37950995

RESUMEN

BACKGROUND: Therapies are urgently required to ameliorate pathological cardiac hypertrophy and enhance cardiac function in heart failure. Our preliminary experiments have demonstrated that exogenous NADPH exhibits a positive inotropic effect on isolated heart. This study aims to investigate the positive inotropic effects of NADPH in pathological cardiac hypertrophy and heart failure, as well as the underlying mechanisms involved. METHODS: Endogenous plasma NADPH contents were determined in patients with chronic heart failure and control adults. The positive inotropic effects of NADPH were investigated in isolated toad heart or rat heart. The effects of NADPH were investigated in isoproterenol (ISO)-induced cardiac hypertrophy or transverse aortic constriction (TAC)-induced heart failure. The underlying mechanisms of NADPH were studied using SIRT3 knockout mice, echocardiography, Western blotting, transmission electron microscopy, and immunoprecipitation. FINDINGS: The endogenous NADPH content in the blood of patients and animals with pathological cardiac hypertrophy or heart failure was significantly reduced compared with age-sex matched control subjects. Exogenous NADPH showed positive inotropic effects on the isolated normal and failing hearts, while antagonism of ATP receptor partially abolished the positive inotropic effect of NADPH. Exogenous NADPH administration significantly reduced heart weight indices, and improved cardiac function in the mice with pathological cardiac hypertrophy or heart failure. NADPH increased SIRT3 expression and activity, deacetylated target proteins, improved mitochondrial function and facilitated ATP production in the hypertrophic myocardium. Importantly, inhibition of SIRT3 abolished the positive inotropic effect of NADPH, and the anti-heart failure effect of NADPH was significantly reduced in the SIRT3 Knockout mice. INTERPRETATION: Exogenous NADPH shows positive inotropic effect and improves energy metabolism via SIRT3 in pathological cardiac hypertrophy and heart failure. NADPH thus may be one of the potential candidates for the treatment of pathological cardiac hypertrophy or heart failure. FUNDING: This work was supported by grants from the National Natural Science Foundation of China (No. 81973315, 82173811, 81730092), Natural Science Foundation of Jiangsu Higher Education (20KJA310008), Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003) and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD).


Asunto(s)
Cardiomegalia , Cardiotónicos , Metabolismo Energético , Insuficiencia Cardíaca , NADP , Sirtuina 3 , Adulto , Animales , Humanos , Ratones , Ratas , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , NADP/farmacología , Sirtuina 3/genética , Sirtuina 3/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico
11.
Int J Neuropsychopharmacol ; 26(10): 680-691, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37603290

RESUMEN

BACKGROUND: Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS: The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS: It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS: Cucurbitacin B has the potential to be a novel antidepressant candidate.


Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Depresión , Animales , Humanos , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
12.
J Pineal Res ; 75(1): e12885, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37183291

RESUMEN

Hypoxia-ischemia (HI) of the brain not only impairs neurodevelopment but also causes pineal gland dysfunction, which leads to circadian rhythm disruption. However, the underlying mechanism of circadian rhythm disruption associated with HI-induced pineal dysfunction remains unknown. The zinc finger protein repressor protein with a predicted molecular mass of 58 kDa (RP58) is involved in the development and differentiation of nerve cells. In this study, we established an HI model in neonatal rats to investigate the expression of RP58 and its role in pineal dysfunction and circadian rhythm disruption induced by HI. We demonstrated that RP58 was highly expressed in the pineal gland under normal conditions and significantly downregulated in the pineal gland and primary pinealocytes following HI. Knockdown of RP58 decreased the expression of enzymes in the melatonin (Mel) synthesis pathway (tryptophan hydroxylase 1 [TPH1], acetylserotonin O-methyltransferase [ASMT], and arylalkylamine N-acetyltransferase [AANAT]) and clock genes (circadian locomotor output cycles kaput [CLOCK] and brain and muscle ARNT-like 1 [BMAL1]), and it also reduced the production of Mel, caused pineal cell injury, and disrupted circadian rhythms in vivo and in vitro. Similarly, HI reduced the expression of Mel synthesis enzymes (TPH1, ASMT, and AANAT) and clock genes (CLOCK and BMAL1), and caused pineal injury and circadian rhythm disruption, which were exacerbated by RP58 knockdown. The detrimental effect of RP58 knockdown on pineal dysfunction and circadian rhythm disruption was reversed by the addition of exogenous Mel. Furthermore, exogenous Mel reversed HI-induced pineal dysfunction and circadian rhythm disruption, as reflected by improvements in Mel production, voluntary activity periods, and activity frequency, as well as a diminished decrease in the expression of Mel synthesis enzymes and clock genes. The present study suggests that RP58 is an endogenous source of protection against pineal dysfunction and circadian rhythm disruption after neonatal HI.


Asunto(s)
Melatonina , Glándula Pineal , Ratas , Animales , Melatonina/metabolismo , Animales Recién Nacidos , Factores de Transcripción ARNTL/metabolismo , ARN Mensajero/metabolismo , Ritmo Circadiano/fisiología , Glándula Pineal/metabolismo , Hipoxia/metabolismo , Isquemia/metabolismo , N-Acetiltransferasa de Arilalquilamina/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo
13.
Exp Gerontol ; 178: 112226, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257699

RESUMEN

Evidence from clinical studies and preclinical studies supports that exercise preconditioning can not only reduce the risk of stroke but also improve brain tissue and functional outcome after stroke. It has been demonstrated that autophagy and mitochondrial dynamics are involved in ischemic stroke. However, it is still unclear whether exercise preconditioning-induced neuroprotection against stroke is associated with modulation of autophagy and mitochondrial dynamics. Although age and sex interactively affect ischemic stroke risk, incidence, and outcome, studies based on young male animals are most often used to explore the role of exercise preconditioning in the prevention of ischemic stroke. In the current study, we examined whether exercise preconditioning could modulate autophagy and mitochondrial dynamics in a brain ischemia and reperfusion (I/R) model of female aged mice. The results showed that exercise preconditioning reduced infarct volume and improved neurological deficits. Additionally, increased levels of autophagy-related proteins LC3-II/LC3-I, LC3-II, p62, Atg7, and mitophagy-related proteins Bnip3L and Parkin, as well as increased levels of mitochondrial fusion modulator Mfn2 and mitochondrial fission modulator Drp1 in the ischemic cortex of female aged mice at 12 h after I/R were present. Our results could contribute to a better understanding of exercise preconditioning-induced neuroprotection against ischemic stroke for the elderly.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Femenino , Ratones , Masculino , Animales , Dinámicas Mitocondriales , Autofagia , Isquemia Encefálica/prevención & control , Corteza Cerebral/metabolismo , Lesiones Encefálicas/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control
14.
Front Pharmacol ; 14: 1096533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056986

RESUMEN

Background: Ischemic stroke seriously threatens human health because of high rates of morbidity, mortality and disability. This study compared the effects of nicotinamide adenine dinucleotide (NAD+) and butylphthalide (NBP) on in vitro and in vivo ischemic stroke models. Methods: Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) model was established in mice, and the cultured primary cortical neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cerebral infarct volume, neurobehavioral indices, antioxidant activity, ATP level and lactic acid content were determined. The neuroprotective effects of NAD+ or NBP were compared using sirtuin inhibitor niacinamide (NAM). Results: Intraperitoneal injection of NBP within 4 h or intravenous injection of NAD+ within 1 h after t-MCAO/R significantly reduced the volume of infarcts, cerebral edema, and neurological deficits. Administration of NAD+ and NBP immediately after t-MCAO/R in mice showed similar neuroprotection against acute and long-term ischemic injury. Both NAD+ and NBP significantly inhibited the accumulation of MDA and H2O2 and reduced oxidative stress. NAD+ was superior to NBP in inhibiting lipid oxidation and DNA damage. Furthermore, although both NAD+ and NBP improved the morphology of mitochondrial damage induced by ischemia/reperfusion, NAD+ more effectively reversed the decrease of ATP and increase of lactic acid after ischemia/reperfusion compared with NBP. NAD+ but not NBP treatment significantly upregulated SIRT3 in the brain, but the sirtuin inhibitor NAM could abolish the protective effect of NAD+ and NBP by inhibiting SIRT1 or SIRT3. Conclusions: These results confirmed the protective effects of NAD+ and NBP on cerebral ischemic injury. NBP and NAD+ showed similar antioxidant effects, while NAD+ had better ability in restoring energy metabolism, possibly through upregulating the activity of SIRT1 and SIRT3. The protection provided by NBP against cerebral ischemia/reperfusion may be achieved through SIRT1.

16.
Redox Biol ; 53: 102323, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35576689

RESUMEN

TP53-induced glycolysis and apoptosis regulator (TIGAR) alleviates oxidative stress and protects against ischemic neuronal injury by shifting glucose metabolism into the pentose phosphate pathway (PPP). However, the brain alters glucose metabolism from PPP to glycolysis during prolonged ischemia. It is still unknown whether and how TIGAR exerts the antioxidant activity and neuroprotection in prolonged ischemic brains. Here, we determined the significant upregulation of TIGAR that was proportional to the duration of ischemia. However, TIGAR failed to upregulate the NADPH level but still alleviated oxidative stress in neuronal cells with prolonged oxygen glucose-deprivation (OGD). Furthermore, inhibiting PPP activity, either by the expression of mutant TIGAR (which lacks enzymatic activity) or by silencing Glucose 6-phosphate dehydrogenase, still retained antioxidant effects and neuroprotection of TIGAR with prolonged OGD. Intriguingly, TIGAR-induced autophagy alleviated oxidative stress, contributing to neuron survival. Further experiments indicated that TIGAR-induced autophagy neutralized oxidative stress by activating Nrf2, which was cancelled by ML385 or Nrf2 knockdown. Remarkably, either Atg7 deletion or Nrf2 silencing abolished the neuroprotection of TIGAR in mice with prolonged ischemia. Taken together, we found a PPP-independent pathway in which TIGAR alleviates oxidative stress. TIGAR induces autophagy and, thus, activates Nrf2, offering sustainable antioxidant defense in brains with extended ischemia. This previously unexplored mechanism of TIGAR may serve as a critical compensation for antioxidant activity caused by the lack of glucose in ischemic stroke.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Vía de Pentosa Fosfato , Daño por Reperfusión , Animales , Antioxidantes/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/metabolismo , Glucosa/metabolismo , Glucólisis , Isquemia/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Daño por Reperfusión/metabolismo
17.
Front Pharmacol ; 13: 889383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462935

RESUMEN

Neuroinflammation plays an important role in the pathogenesis of many central nervous system diseases. Here, we investigated the effect of an anti-cancer compound RRx-001 on neuroinflammation and its possible new applications. BV2 cells and primary microglia cells were used to evaluate the role of RRx-001 in LPS-induced microglial activation and inflammatory response in vitro. And, we found that the increase in the synthesis and release of cytokines and the up-regulation of pro-inflammatory factors in LPS-treated microglial cells were significantly reduced by RRx-001 pretreatment. As the most classical inflammatory pathways, NF-κB and MAPK signaling pathways were activated by LPS, but were inhibited by RRx-001. Transcription of NLRP3 was also reduced by RRx-001. In addition, LPS induced oxidative stress by increasing the expression of Nox mediated by transcription factors NF-κB and AP-1, while RRx-001 pretreatment ameliorated Nox-mediated oxidative stress. LPS-induced activation of TAK1, an upstream regulator of NF-κB and MAPK pathways, was significantly inhibited by RRx-001 pretreatment, whereas recruitment of MyD88 to TLR4 was not affected by RRx-001. LPS-primed BV2 condition medium induced injury of primary neurons, and this effect was inhibited by RRx-001. Furthermore, we established a neuroinflammatory mouse model by stereotactic injection of LPS into the substantia nigra pars compacta (SNpc), and RRx-001 dose-dependently reduced LPS-induced microglial activation and loss of TH + neurons in the midbrain. In conclusion, the current study found that RRx-001 suppressed microglia activation and neuroinflammation through targeting TAK1, and may be a candidate for the treatment of neuroinflammation-related brain diseases.

18.
Acta Pharmacol Sin ; 43(10): 2439-2447, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35233090

RESUMEN

Both mitochondrial dysfunction and neuroinflammation are implicated in neurodegeneration and neurodegenerative diseases. Accumulating evidence shows multiple links between mitochondrial dysfunction and neuroinflammation. Mitochondrial-derived damage-associated molecular patterns (DAMPs) are recognized by immune receptors of microglia and aggravate neuroinflammation. On the other hand, inflammatory factors released by activated glial cells trigger an intracellular cascade, which regulates mitochondrial metabolism and function. The crosstalk between mitochondrial dysfunction and neuroinflammatory activation is a complex and dynamic process. There is strong evidence that mitochondrial dysfunction precedes neuroinflammation during the progression of diseases. Thus, an in-depth understanding of the specific molecular mechanisms associated with mitochondrial dysfunction and the progression of neuroinflammation in neurodegenerative diseases may contribute to the identification of new targets for the treatment of diseases. In this review, we describe in detail the DAMPs that induce or aggravate neuroinflammation in neurodegenerative diseases including mtDNA, mitochondrial unfolded protein response (mtUPR), mitochondrial reactive oxygen species (mtROS), adenosine triphosphate (ATP), transcription factor A mitochondria (TFAM), cardiolipin, cytochrome c, mitochondrial Ca2+ and iron.


Asunto(s)
Alarminas , Mitocondrias , Enfermedades Neuroinflamatorias , Adenosina Trifosfato/metabolismo , Alarminas/metabolismo , Cardiolipinas/metabolismo , Citocromos c/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Inflamación/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
19.
Aging (Albany NY) ; 14(1): 354-367, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995210

RESUMEN

Telomere is a unique DNA-protein complex which covers the ends of chromosomes to avoid end fusion and maintain the stability and integrity of chromosomes. Telomere length (TL) shortening has been linked to aging and various age-related diseases in humans. Here we recruited a total of 1031 Chinese individuals aged between 12 and 111 years, including 108 families with parents and their offspring. DNA was extracted from peripheral white blood cells and TL was measured by quantitative PCR (qPCR). We explored the associations of TL with age, gender and clinical variables, and tested the parental effects on TL variation. First, we found that TL was shortened with age, however, TL was better maintained in females than males. Second, there was a robust association of TL between mother and offspring, but not between father and their offspring. In addition, TL was inversely associated with visceral fat index in females, and positively associated with apolipoprotein A levels. Knockdown of the key genes for lipid metabolism (PNPLA2 and CPT1) shortened the TL in HepG2 cells. These findings indicate that TL is maternally inherited, and impairment of lipid metabolism may contribute to the TL shortening in the Chinese population.


Asunto(s)
Pueblo Asiatico/genética , Metabolismo de los Lípidos/genética , Telómero/genética , Telómero/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Acta Pharmacol Sin ; 43(8): 1889-1904, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35017669

RESUMEN

The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.


Asunto(s)
NAD , Fosfatos , Metabolismo Energético , Humanos , NAD/metabolismo , NADP , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA