Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2412031121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39254999

RESUMEN

Higher-order topological phases in non-Hermitian photonics revolutionize the understanding of wave propagation and modulation, which lead to hierarchical states in open systems. However, intrinsic insulating properties endorsed by the lattice symmetry of photonic crystals fundamentally confine the robust transport only at explicit system boundaries, letting alone the flexible reconfiguration in hierarchical states at arbitrary positions. Here, we report a dynamic topological platform for creating the reconfigurable hierarchical bound states in heat transport systems and observe the robust and nonlocalized higher-order states in both the real- and imaginary-valued bands. Our experiments showcase that the hierarchical features of zero-dimension corner and nontrivial edge modes occur at tailored positions within the system bulk states instead of the explicit system boundaries. Our findings uncover the mechanism of non-localized hierarchical non-trivial topological states and offer distinct paradigms for diffusive transport field management.

2.
Proc Natl Acad Sci U S A ; 121(39): e2408974121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292742

RESUMEN

Metamaterial has been captivated a popular notion, offering photonic functionalities beyond the capabilities of natural materials. Its desirable functionality primarily relies on well-controlled conditions such as structural resonance, dispersion, geometry, filling fraction, external actuation, etc. However, its fundamental building blocks-meta-atoms-still rely on naturally occurring substances. Here, we propose and validate the concept of gradient and reversible atomic-engineered metamaterials (GRAM), which represents a platform for continuously tunable solid metaphotonics by atomic manipulation. GRAM consists of an atomic heterogenous interface of amorphous host and noble metals at the bottom, and the top interface was designed to facilitate the reversible movement of foreign atoms. Continuous and reversible changes in GRAM's refractive index and atomic structures are observed in the presence of a thermal field. We achieve multiple optical states of GRAM at varying temperature and time and demonstrate GRAM-based tunable nanophotonic devices in the visible spectrum. Further, high-efficiency and programmable laser raster-scanning patterns can be locally controlled by adjusting power and speed, without any mask-assisted or complex nanofabrication. Our approach casts a distinct, multilevel, and reversible postfabrication recipe to modify a solid material's properties at the atomic scale, opening avenues for optical materials engineering, information storage, display, and encryption, as well as advanced thermal optics and photonics.

3.
Nutrients ; 16(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275195

RESUMEN

The causal association of circulating metabolites with dementia remains uncertain. We assessed the causal association of circulating metabolites with dementia utilizing Mendelian randomization (MR) methods. We performed univariable MR analysis to evaluate the associations of 486 metabolites with dementia, Alzheimer's disease (AD), and vascular dementia (VaD) risk. For secondary validation, we replicated the analyses using an additional dataset with 123 metabolites. We observed 118 metabolites relevant to the risk of dementia, 59 of which were lipids, supporting the crucial role of lipids in dementia pathogenesis. After Bonferroni adjustment, we identified nine traits of HDL particles as potential causal mediators of dementia. Regarding dementia subtypes, protective effects were observed for epiandrosterone sulfate on AD (OR = 0.60, 95% CI: 0.48-0.75) and glycoproteins on VaD (OR = 0.89, 95% CI: 0.83-0.95). Bayesian model averaging MR (MR-BMA) analysis was further conducted to prioritize the predominant metabolites for dementia risk, which highlighted the mean diameter of HDL particles and the concentration of very large HDL particles as the predominant protective factors against dementia. Moreover, pathway analysis identified 17 significant and 2 shared metabolic pathways. These findings provide support for the identification of promising predictive biomarkers and therapeutic targets for dementia.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Demencia , Análisis de la Aleatorización Mendeliana , Humanos , Demencia/sangre , Demencia/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Biomarcadores/sangre , Factores de Riesgo , Teorema de Bayes , Demencia Vascular/sangre , Demencia Vascular/genética , Masculino , Femenino
4.
Int Immunopharmacol ; 142(Pt A): 113107, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276458

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It poses an enormous socioeconomic burden and is a serious public health threat globally due to its poor prognosis. Ferroptosis is a newly identified non-apoptotic form of cell death characterized by lipid peroxidation, iron accumulation, and reactive oxygen species (ROS) generation. However, tumor cells have evolved diverse mechanisms to evade ferroptosis, conferring resistance to drugs. Sorafenib, a first-line therapy for advanced HCC, triggers ferroptosis by selectively targeting solute carrier family 7 member 11 (SLC7A11) to deplete glutathione and inhibit glutathione peroxidase 4 (GPX4), thereby effectively eliminating tumor cells. However, sorafenib resistance has been widely reported, and the precise mechanisms underlying sorafenib drug resistance remain unclear. The minichromosome maintenance (MCM) protein family contains 10 members with vital roles in DNA replication and cell cycle progression. MCM4, a member of the MCM protein family, might be a potential biomarker in pan-cancer analysis. The present study found that MCM4 was upregulated in liver cancer using bioinformatics analysis and sorafenib-treated HCC cells. Moreover, MCM4 might be regarded as a prognostic biomarker for HCC. Further experiments revealed that MCM4-inhibition enhanced the efficacy of sorafenib through elevation of ferroptosis both in vitro and in vivo. Mechanistically, MCM4 potentiates sorafenib-induced ferroptosis evasion in HCC by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) signaling activation. However, no direct interactions were found between Nrf2 and MCM4. Overall, these findings suggest a potential therapeutic strategy for HCC by targeting MCM4 inhibition.

5.
Nat Commun ; 15(1): 7819, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242615

RESUMEN

High-order diffraction (HOD) from optical microstructures is undesirable in many applications because of the accompanying ghosting patterns and loss of efficiency. In contrast to suppressing HOD with subwavelength structures that challenge the fabrication of large-scale devices, managing HOD is less developed due to the lack of an efficient method for independently manipulating HOD. Here, we report independent manipulation of HODs, which are unexploited for subdiffraction-limit focusing in diffractive lenses, through an analytical formula that correlates the diffraction order and the width of each zone. The large spatial frequencies offered by the HODs enable our lenses to reduce the lateral focal size down to 0.44 λ even without any subwavelength feature (indispensable in most high-NA diffractive lenses), facilitating large-scale manufacture. Experimentally, we demonstrate high-order lens-based confocal imaging with a center-to-center dry resolution of 190 nm, the highest among visible-light confocal microscopies, and laser-ablation lithography with achieved direct-writing resolution of 400 nm (0.385 λ).

6.
Biomed Pharmacother ; 179: 117296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39167842

RESUMEN

Over the past decades, cancer immunotherapy has encountered challenges such as immunogenicity, inefficiency, and cytotoxicity. Consequently, exosome-based cancer immunotherapy has gained rapid traction as a promising alternative. Exosomes, a type of extracellular vesicles (EVs) ranging from 50 to 150 nm, are self-originating and exhibit fewer side effects compared to traditional therapies. Exosome-based immunotherapy encompasses three significant areas: cancer vaccination, co-inhibitory checkpoints, and adoptive T-cell therapy. Each of these fields leverages the inherent advantages of exosomes, demonstrating substantial potential for individualized tumor therapy and precision medicine. This review aims to elucidate the reasons behind the promise of exosome-based nanoparticles as cancer therapies by examining their characteristics and summarizing the latest research advancements in cancer immunotherapy.


Asunto(s)
Exosomas , Inmunoterapia , Nanopartículas , Neoplasias , Humanos , Exosomas/metabolismo , Exosomas/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Animales , Inmunoterapia/métodos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación
7.
Nat Commun ; 15(1): 7047, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147731

RESUMEN

Anisotropic optical crystals can exhibit a hyperbolic response within the Reststrahlen band (RB) and support directional polaritonic propagations when interacting with light. Most of the reported low-symmetry optical crystals showcase the evolution from hyperbolic to elliptic dispersion topologies, largely owing to their adjacent RBs being either overlapped or separated. Here, we report an exceptional Reststrahlen point (ERP) in rare-earth oxyorthosilicate Y2SiO5, at which two neighboring RBs almost kiss each other. Consequently, we observe the direct hyperbolic-to-hyperbolic topological transition: the hyperbolic branches close and reopen along with the rotating transverse axis (TA). At such ERP, the TA merges to the direction orthogonal to its proximate phonon mode, mainly due to the interplay between these two non-orthogonal phonon modes. We also find that even with the existence of only one single RB, the TA can rotate in-plane. Our findings are prevalent in isostructural rare-earth oxyorthosilicates, such as Lu2SiO5. The universally underlying physics of ERP and its corresponding special class of rare-earth oxyorthosilicates may offer playgrounds for continuously tuning phonon polariton propagation direction, and broadband controlling light dispersion of polaritonic nanodevices.

8.
Phys Rev Lett ; 133(6): 066902, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178433

RESUMEN

Charge-order states of broken symmetry, such as charge density wave (CDW), are able to induce exceptional physical properties, however, the precise understanding of the underlying physics is still elusive. Here, we combine fluctuational electrodynamics and density functional theory to reveal an unconventional thermophotonic effect in CDW-bearing TiSe_{2}, referred to as thermophotonic-CDW (tp-CDW). The interplay of plasmon polariton and CDW electron excitations give rise to an anomalous negative temperature dependency in thermal photons transport, offering an intuitive fingerprint for a transformation of the electron order. Additionally, the demonstrated nontrivial features of tp-CDW transition hold promise for a controllable manipulation of heat flow, which could be extensively utilized in various fields such as thermal science and electron dynamics, as well as in next-generation energy devices.

9.
Rep Prog Phys ; 87(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39121866

RESUMEN

Topological Anderson phases (TAPs) offer intriguing transitions from ordered to disordered systems in photonics and acoustics. However, achieving these transitions often involves cumbersome structural modifications to introduce disorders in parameters, leading to limitations in flexible tuning of topological properties and real-space control of TAPs. Here, we exploit disordered convective perturbations in a fixed heat transport system. Continuously tunable disorder-topology interactions are enabled in thermal dissipation through irregular convective lattices. In the presence of a weak convective disorder, the trivial diffusive system undergos TAP transition, characterized by the emergence of topologically protected corner modes. Further increasing the strength of convective perturbations, a second phase transition occurs converting from TAP to Anderson phase. Our work elucidates the pivotal role of disorders in topological heat transport and provides a novel recipe for manipulating thermal behaviors in diverse topological platforms.

10.
Heliyon ; 10(15): e35121, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157341

RESUMEN

Background: Osteoarthritis (OA) is a common chronic joint disease. This study aimed to investigate possible OA diagnostic biomarkers and to verify their significance in clinical samples. Methods: We exploited three datasets from the Gene Expression Omnibus (GEO) database, serving as the training set. We first determined differentially expressed genes and screened candidate diagnostic biomarkers by applying three machine learning algorithms (Random Forest, Least Absolute Shrinkage and Selection Operator logistic regression, Support Vector Machine-Recursive Feature Elimination). Another GEO dataset was used as the validation set. The test set consisted of RNA-sequenced peripheral blood samples collected from patients and healthy donors. Blood samples and chondrocytes were collected for quantitative real-time PCR to confirm expression levels. Receiver operating characteristic curves were generated for individual and combined biomarkers. Results: In total, 251 DEGs were screened, where B3GALNT1, SCRG1 and ZNF423 were screened by all three algorithms. The area under the curve (AUC) of various biomarkers in our test set did not reach as high as that in public datasets. GRB10 exhibited highest AUC of 0.947 in the training set but 0.691 in our test set, while the favorable combined model comprising B3GALNT1, GRB10, KLF9 and SCRG1 demonstrated an AUC of 0.986 in the training set, 1.000 in the validation set and 0.836 in our test set. Conclusion: We identified a combined model for early diagnosis of OA that includes B3GALNT1, GRB10, KLF9 and SCRG1. This finding offers new avenues for further exploration of mechanisms underlying OA.

11.
Front Cell Dev Biol ; 12: 1435664, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211393

RESUMEN

Liver cancer is one of the most lethal gastrointestinal malignancies. Emerging evidence has underscored the pivotal role of long non-coding RNAs (lncRNAs) in tumorigenesis, with ST8SIA6-AS1 identified as a novel oncogenic lncRNA contributing to liver cancer progression. ST8SIA6-AS1 is consistently upregulated in hepatic cancer tissues and is strongly associated with unfavorable prognosis. Moreover, it demonstrates high diagnostic efficacy in detecting HCC. ST8SIA6-AS1 is involved in various cellular processes including proliferation, migration, and invasion, primarily through its function as a competing endogenous RNA (ceRNA), thereby facilitating hepatocarcinogenesis and disease advancement. This review provides a detailed examination of the molecular functions and regulatory mechanisms of ST8SIA6-AS1 in hepatocellular carcinoma (HCC) and highlights its potential as a promising biomarker for liver cancer, aiming to propel the development of innovative therapeutic strategies for HCC management.

12.
Proc Natl Acad Sci U S A ; 121(35): e2408843121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163329

RESUMEN

The topological physics has sparked intensive investigations into topological lattices in photonic, acoustic, and mechanical systems, powering counterintuitive effects otherwise inaccessible with usual settings. Following the success of these endeavors in classical wave dynamics, there has been a growing interest in establishing their topological counterparts in diffusion. Here, we propose an additional real-space dimension in diffusion, and the system eigenvalues are transformed from "imaginary" to "real." By judiciously tailoring the effective Hamiltonian with coupling networks, localized and delocalized topological modes are realized in heat transfer. Simulations and experiments in active thermal lattices validate the effectiveness of the proposed theoretical strategy. This approach can be applied to establish various topological lattices in diffusion systems, offering insights into engineering topologically protected edge states in dynamic diffusive scenarios.

13.
Nat Nanotechnol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020101

RESUMEN

Optical monitoring of the position and alignment of objects with a precision of only a few nanometres is key in applications such as smart manufacturing and force sensing. Traditional optical nanometrology requires precise nanostructure fabrication, multibeam interference or complex postprocessing algorithms, sometimes hampering wider adoption of this technology. Here we show a simplified, yet robust, approach to achieve nanometric metrology down to 2 nm resolution that eliminates the need for any reference signal for interferometric measurements. We insert an erbium-doped quartz crystal absorber into a single Fabry-Pérot cavity with a length of 3 cm and then induce exceptional points by matching the optical loss with the intercavity coupling. We experimentally achieve a displacement response enhancement of 86 times compared with lossless methods, and theoretically argue that an enhancement of over 450 times, corresponding to subnanometre resolution, may be achievable. We also show a fivefold enhancement in the signal-to-noise ratio, thus demonstrating that non-Hermitian sensors can lead to improved performances over the Hermitian counterpart.

14.
Phys Rev Lett ; 132(25): 253802, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996238

RESUMEN

Aside from optical pushing and trapping that have been implemented successfully, the transportation of objects backward to the source by the optical pulling forces (OPFs) has attracted tremendous attention, which was usually achieved by increasing the forward momentum of light. However, the limited momentum transfer between light and object greatly constrains the amplitudes of OPFs. Here, we present a mechanism to generate strong interactions between object and background through the bound states in the continuums, which can generate large OPFs without increasing the forward momentum of light. The underlying physics is the extraction of momentum from the designed background lattice units assisted by mode symmetry. This work paves the way for extraordinary optical manipulations and shows great potential for exploring the momenta of light in media.

15.
Phys Rev Lett ; 132(25): 253803, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996228

RESUMEN

The spin angular momentum (SAM) of an elliptically or circularly polarized light beam can be transferred to matter to drive a spinning motion. It is counterintuitive to find that a light beam without SAM can also cause the spinning of microparticles. Here, we demonstrate controllable spinning of birefringent microparticles via a tightly focused radially polarized vortex beam that has no SAM prior to focusing. To this end, the orbital Hall effect is proposed to control the radial separation of two spin components in the focused field, and tunable transfer of local SAM to microparticles is achieved by manipulating the twisted wavefront of the source light. Our work broadens the perspectives for controllable exertion of optical torques via the spin-orbit interactions.

16.
J Environ Manage ; 366: 121661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991353

RESUMEN

Arsenic (As) and cadmium (Cd) accumulation in rice grains is a global food safety issue, and various methods and materials have been used to remove or reduce As and Cd in agricultural soils and rice grains. Despite the availability of synthesized materials capable of simultaneous As and Cd reduction from soil and rice grains, the contributions, efficiency, and main ingredients of the materials for As and Cd immobilization remain unclear. The present study first summarized the biogeochemistry of As and Cd in paddy soils and their transfer in the soil-food-human continuum. We also reviewed a series of reported inorganic and organic materials for simultaneous immobilization of As and Cd in paddy soils, and their reduction efficiency of As and Cd bioavailability were listed and compared. Based on the abovementioned materials, the study conducted a meta-analysis of 38 articles with 2565 observations to quantify the impacts of materials on simultaneous As and Cd reduction from soil and rice grains. Meta-analysis results showed that combining organic and inorganic amendments corresponded to effect sizes of -62.3% and -67.8% on As and Cd accumulation in rice grains, while the effect sizes on As and Cd reduction in paddy soils were -44.2% and -46.2%, respectively. Application of Fe based materials significantly (P < 0.05) reduced As (-54.2%) and Cd (-74.9%), accounting for the highest immobilization efficiency of As and Cd in rice grain among all the reviewed materials, outweighing S, Mn, P, Si, and Ca based materials. Moreover, precipitation, surface complexation, ion exchange, and electrostatic attraction mechanisms were involved in the co-immobilization tactics. The present study underlines the application of combined organic and inorganic amendments in simultaneous As and Cd immobilization. It also highlighted that employing Fe-incorporated biochar material may be a potential strategy for co-mitigating As and Cd pollution in paddy soils and accumulation in rice grains.


Asunto(s)
Arsénico , Cadmio , Oryza , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Agricultura
17.
Nat Comput Sci ; 4(7): 532-541, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982225

RESUMEN

Transformation theory, active control and inverse design have been mainstream in creating free-form metamaterials. However, existing frameworks cannot simultaneously satisfy the requirements of isotropic, passive and forward design. Here we propose a forward conformality-assisted tracing method to address the geometric and single-physical-field constraints of conformal transformation. Using a conformal mesh composed of orthogonal streamlines and isotherms (or isothermal surfaces), this method quasi-analytically produces free-form metamaterials using only isotropic media. The geometric nature of this approach allows for universal regulation of both dissipative thermal fields and non-dissipative electromagnetic fields. We experimentally demonstrate free-form thermal cloaking in both two and three dimensions. Additionally, the multi-physical functionalities of our method, including optical cloaking, bending and thermo-electric transparency, confirm its broad applicability. Our method features improvements in efficiency, accuracy and adaptability over previous approaches. This study provides an effective method for designing complex metamaterials with arbitrary shapes across various physical domains.

18.
Int J Biol Macromol ; 276(Pt 2): 134025, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033888

RESUMEN

Bioenvironmental and biological factors have the potential to contribute to the development of glioma, a type of brain tumor. Recent studies have suggested that a unique circular RNA called circCSNK1G3 could play a role in promoting the growth of glioma cells. It does this by stabilizing a specific microRNA called miR-181 and reducing the expression of a tumor-suppressor gene known as chromobox protein homolog 7 (CBX7). To further investigate circCSNK1G3 and its effects on glioma, we utilized a nanoplatform called adeno-associated virus (AAV)-RNAi.To explore the functional implications of circCSNK1G3, we employed siRNA to silence its expression. Along with these effects, the silencing of circCSNK1G3 led to a depletion of miR-181d and an upregulation of CBX7. When we introduced miR-181d mimics, which artificially increase the levels of miR-181d, the anti-glioma cell activity induced by circCSNK1G3 siRNA was almost completely reversed. Conversely, inhibiting miR-181d mimicked the effects of circCSNK1G3 silencing. Moreover, when we overexpressed circCSNK1G3 in glioma cells, we observed an elevation of miR-181d and a depletion of CBX7. We found that the growth of A172 xenografts (tumors) carrying circCSNK1G3 shRNA was significantly inhibited. In these xenograft tissues, we detected a depletion of circCSNK1G3 and miR-181d, as well as an upregulation of CBX7.


Asunto(s)
Proliferación Celular , Glioma , MicroARNs , Complejo Represivo Polycomb 1 , ARN Circular , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , ARN Circular/genética , ARN Circular/metabolismo , Ratones , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Ratones Desnudos , Dependovirus/genética
19.
Commun Biol ; 7(1): 887, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033200

RESUMEN

Light serves as a crucial external zeitgeber for maintaining and restoring physiological homeostasis in most organisms. Disrupting of light rhythms often leads to abnormal immune function, characterized by excessive inflammatory responses. However, the underlying regulatory mechanisms behind this phenomenon remain unclear. To address this concern, we use in vivo imaging to establish inflammation models in zebrafish, allowing us to investigate the effects and underlying mechanisms of light disruption on neutrophil recruitment. Our findings reveal that under sustained light conditions (LL), neutrophil recruitment in response to caudal fin injury and otic vesicle inflammation is significantly increased. This is accompanied by elevated levels of histone (H3K18) lactylation and reactive oxygen species (ROS) content. Through ChIP-sequencing and ChIP‒qPCR analysis, we discover that H3K18 lactylation regulates the transcriptional activation of the duox gene, leading to ROS production. In turn, ROS further promote H3K18 lactylation, forming a positive feedback loop. This loop, driven by H3K18 lactylation-ROS, ultimately results in the over recruitment of neutrophils to inflammatory sites in LL conditions. Collectively, our study provides evidence of a mutual loop between histone lactylation and ROS, exacerbating neutrophil recruitment in light disorder conditions, emphasizing the significance of maintaining a proper light-dark cycle to optimize immune function.


Asunto(s)
Histonas , Luz , Infiltración Neutrófila , Especies Reactivas de Oxígeno , Pez Cebra , Animales , Pez Cebra/metabolismo , Histonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Luz/efectos adversos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Inflamación/metabolismo
20.
Nanomaterials (Basel) ; 14(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38869594

RESUMEN

Polarization-insensitive semiconductor optical amplifiers (SOAs) in all-optical networks can improve the signal-light quality and transmission rate. Herein, to reduce the gain sensitivity to polarization, a multi-quantum-well SOA in the 1550 nm band is designed, simulated, and developed. The active region mainly comprises the quaternary compound InGaAlAs, as differences in the potential barriers and wells of the components cause lattice mismatch. Consequently, a strained quantum well is generated, providing the SOA with gain insensitivity to the polarization state of light. In simulations, the SOA with ridge widths of 4 µm, 5 µm, and 6 µm is investigated. A 3 dB gain bandwidth of >140 nm is achieved with a 4 µm ridge width, whereas a 6 µm ridge width provides more output power and gain. The saturated output power is 150 mW (21.76 dB gain) at an input power of 0 dBm but increases to 233 mW (13.67 dB gain) at an input power of 10 dBm. The polarization sensitivity is <3 dBm at -20 dBm. This design, which achieves low polarization sensitivity, a wide gain bandwidth, and high gain, will be applicable in a wide range of fields following further optimization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA