Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4420-4426, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307778

RESUMEN

Based on the differences in targeted energy metabolomics, intestinal barrier protein expression, and glucose transport,the synergistic mechanism of Coptidis Rhizoma(CR) processed with Euodiae Fructus(ECR) on ulcerative colitis(UC) was explored.Mice were administered 4% dextran sulfate sodium to induce UC model, and then randomly divided into a model group, a CR group,and an ECR group. After 14 days of treatment, the therapeutic effect of processing on UC was assessed through histopathology of colon tissue and inflammatory indexes. Targeted energy metabolomics analysis was performed to evaluate the effect of processing on colon tissue energy metabolism. Molecular docking was carried out to predict the binding affinity of energy metabolites with intestinal barrier tight junction protein Claudin and glucose transporter 2(GLUT2). In vivo unidirectional intestinal perfusion experiments in rats were conducted to evaluate the effect of processing on intestinal glucose transport. The results showed that both CR and ECR could repair colon tissue damage in UC mice, downregulate tissue inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α)levels, with the efficacy of ECR being superior to CR. Processed products significantly upregulated levels of multiple metabolites in colon tissue glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation, among which the upregulated levels of 1,6-diphosphate fructose and acetyl coenzyme A could bind well with Claudin and GLUT2. Additionally, the processed product also increased the expression of GLUT2 and enhanced glucose transport activity. This study suggests that ECR may enhance glucose transport to improve colon energy metabolism, promote barrier repair, and exert synergistic effects through processing.


Asunto(s)
Colitis Ulcerosa , Coptis chinensis , Medicamentos Herbarios Chinos , Metabolismo Energético , Evodia , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Ratones , Metabolismo Energético/efectos de los fármacos , Masculino , Ratas , Evodia/química , Ratas Sprague-Dawley , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Simulación del Acoplamiento Molecular
2.
Genes Dis ; 11(6): 101337, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39281834

RESUMEN

Recent studies have explored the spatial transcriptomics patterns of Alzheimer's disease (AD) brain by spatial sequencing in mouse models, enabling the identification of unique genome-wide transcriptomic features associated with different spatial regions and pathological status. However, the dynamics of gene interactions that occur during amyloid-ß accumulation remain largely unknown. In this study, we performed analyses on ligand-receptor communication, transcription factor regulatory network, and spot-specific network to reveal the dependence and the dynamics of gene associations/interactions on spatial regions and pathological status with mouse and human brains. We first used a spatial transcriptomics dataset of the App NL-G-F knock-in AD and wild-type mouse model. We revealed 17 ligand-receptor pairs with opposite tendencies throughout the amyloid-ß accumulation process and showed the specific ligand-receptor interactions across the hippocampus layers at different extents of pathological changes. We then identified nerve function related transcription factors in the hippocampus and entorhinal cortex, as well as genes with different transcriptomic association degrees in AD versus wild-type mice. Finally, another independent spatial transcriptomics dataset from different AD mouse models and human single-nuclei RNA-seq data/AlzData database were used for validation. This is the first study to identify various gene associations throughout amyloid-ß accumulation based on spatial transcriptomics, establishing the foundations to reveal advanced and in-depth AD etiology from a novel perspective based on the comprehensive analyses of gene interactions that are spatio-temporal dependent.

3.
Front Psychol ; 15: 1415552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286562

RESUMEN

Purpose: This study aims to explore the effectiveness of enhancing individual spatial cognitive abilities in alleviating the negative symptoms of visually induced motion sickness (VIMS). Additionally, it seeks to develop innovative intervention methods to improve spatial cognition and identify new treatment approaches for VIMS. Methods: The study investigated the impact of innovative interventions on spatial cognitive abilities and their modulation of VIMS susceptibility. A total of 43 participants were recruited (23 in the experimental group and 20 in the control group). The experimental group underwent six sessions of spatial cognitive ability training, while the control group engaged in activities unrelated to spatial cognition. Results: The analysis revealed that the spatial cognitive ability scores of the experimental group significantly improved after the intervention. Furthermore, the experimental group exhibited significant differences in nausea, oculomotor, disorientation, and total SSQ scores before and after the intervention, indicating that the intervention effectively mitigated VIMS symptoms. Conclusion: This study developed a virtual reality training method that effectively enhances individual spatial cognitive abilities and significantly alleviates VIMS symptoms, providing a novel and effective approach for VIMS intervention and treatment.

4.
medRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39211851

RESUMEN

Elucidating the genetic architecture of DNA methylation (DNAm) is crucial for decoding the etiology of complex diseases. However, current epigenomic studies often suffer from incomplete coverage of methylation sites and the use of tissues containing heterogeneous cell populations. To address these challenges, we present a comprehensive human methylome atlas based on deep whole-genome bisulfite sequencing (WGBS) and whole-genome sequencing (WGS) of purified monocytes from 298 European Americans (EA) and 160 African Americans (AA) in the Louisiana Osteoporosis Study. Our atlas enables the analysis of over 25 million DNAm sites. We identified 1,383,250 and 1,721,167 methylation quantitative trait loci (meQTLs) in cis -regions for EA and AA populations, respectively, with 880,108 sites shared between ancestries. While cis -meQTLs exhibited population-specific patterns, primarily due to differences in minor allele frequencies, shared cis -meQTLs showed high concordance across ancestries. Notably, cis -heritability estimates revealed significantly higher mean values in the AA population (0.09) compared to the EA population (0.04). Furthermore, we developed population-specific DNAm imputation models using Elastic Net, enabling methylome-wide association studies (MWAS) for 1,976,046 and 2,657,581 methylation sites in EA and AA, respectively. The performance of our MWAS models was validated through a systematic multi-ancestry analysis of 41 complex traits from the Million Veteran Program. Our findings bridge the gap between genomics and the monocyte methylome, uncovering novel methylation-phenotype associations and their transferability across diverse ancestries. The identified meQTLs, MWAS models, and data resources are freely available at www.gcbhub.org and https://osf.io/gct57/ .

5.
J Bone Miner Res ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167757

RESUMEN

Osteoporosis, characterized by low bone mineral density (BMD), is a highly heritable metabolic bone disorder. While single nucleotide variations (SNVs) have been extensively studied, they explain only a fraction of BMD heritability. While genomic structural variations (SVs) are large-scale genomic alterations that contribute to genetic diversity in shaping phenotypic variations, the role of SVs in osteoporosis susceptibility remains poorly understood. This study aims to identify and prioritize genes that harbor BMD-related SVs. We performed whole genome sequencing on 4982 subjects from the Louisiana Osteoporosis Study. To obtain high-confidence SVs, the detection of SVs was performed using an ensemble approach. The SVs were tested for association with BMD variation at the hip (HIP), femoral neck (FNK), and lumbar spine (SPN), respectively. Additionally, we conducted co-occurrence analysis using multi-omics approaches to prioritize the identified genes based on their functional importance. Stratification was employed to explore the sex- and ethnicity-specific effects. We identified significant SV-BMD associations: 125 for FNK-BMD, 99 for SPN-BMD, and 83 for HIP-BMD. We observed SVs that were commonly associated with both FNK and HIP BMDs in our combined and stratified analyses. These SVs explain 13.3% to 19.1% of BMD variation. Novel bone-related genes emerged, including LINC02370, ZNF family genes, and ZDHHC family genes. Additionally, FMN2, carrying BMD-related deletions, showed associations with FNK or HIP BMDs, with sex-specific effects. The co-occurrence analysis prioritized an RNA gene LINC00494 and ZNF family genes positively associated with BMDs at different skeletal sites. Two potential causal genes, IBSP and SPP1, for osteoporosis were also identified. Our study uncovers new insights into genetic factors influencing BMD through SV analysis. We highlight BMD-related SVs, revealing a mix of shared and specific genetic influences across skeletal sites and gender or ethnicity. These findings suggest potential roles in osteoporosis pathophysiology, opening avenues for further research and therapeutic targets.

6.
PLoS Med ; 21(8): e1004451, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39213443

RESUMEN

BACKGROUND: Osteoporosis is a major global health issue, weakening bones and increasing fracture risk. Dual-energy X-ray absorptiometry (DXA) is the standard for measuring bone mineral density (BMD) and diagnosing osteoporosis, but its costliness and complexity impede widespread screening adoption. Predictive modeling using genetic and clinical data offers a cost-effective alternative for assessing osteoporosis and fracture risk. This study aims to develop BMD prediction models using data from the UK Biobank (UKBB) and test their performance across different ethnic and geographical populations. METHODS AND FINDINGS: We developed BMD prediction models for the femoral neck (FNK) and lumbar spine (SPN) using both genetic variants and clinical factors (such as sex, age, height, and weight), within 17,964 British white individuals from UKBB. Models based on regression with least absolute shrinkage and selection operator (LASSO), selected based on the coefficient of determination (R2) from a model selection subset of 5,973 individuals from British white population. These models were tested on 5 UKBB test sets and 12 independent cohorts of diverse ancestries, totaling over 15,000 individuals. Furthermore, we assessed the correlation of predicted BMDs with fragility fractures risk in 10 years in a case-control set of 287,183 European white participants without DXA-BMDs in the UKBB. With single-nucleotide polymorphism (SNP) inclusion thresholds at 5×10-6 and 5×10-7, the prediction models for FNK-BMD and SPN-BMD achieved the highest R2 of 27.70% with a 95% confidence interval (CI) of [27.56%, 27.84%] and 48.28% (95% CI [48.23%, 48.34%]), respectively. Adding genetic factors improved predictions slightly, explaining an additional 2.3% variation for FNK-BMD and 3% for SPN-BMD over clinical factors alone. Survival analysis revealed that the predicted FNK-BMD and SPN-BMD were significantly associated with fragility fracture risk in the European white population (P < 0.001). The hazard ratios (HRs) of the predicted FNK-BMD and SPN-BMD were 0.83 (95% CI [0.79, 0.88], corresponding to a 1.44% difference in 10-year absolute risk) and 0.72 (95% CI [0.68, 0.76], corresponding to a 1.64% difference in 10-year absolute risk), respectively, indicating that for every increase of one standard deviation in BMD, the fracture risk will decrease by 17% and 28%, respectively. However, the model's performance declined in other ethnic groups and independent cohorts. The limitations of this study include differences in clinical factors distribution and the use of only SNPs as genetic factors. CONCLUSIONS: In this study, we observed that combining genetic and clinical factors improves BMD prediction compared to clinical factors alone. Adjusting inclusion thresholds for genetic variants (e.g., 5×10-6 or 5×10-7) rather than solely considering genome-wide association study (GWAS)-significant variants can enhance the model's explanatory power. The study highlights the need for training models on diverse populations to improve predictive performance across various ethnic and geographical groups.


Asunto(s)
Absorciometría de Fotón , Densidad Ósea , Osteoporosis , Humanos , Masculino , Densidad Ósea/genética , Femenino , Persona de Mediana Edad , Anciano , Osteoporosis/genética , Osteoporosis/diagnóstico , Medición de Riesgo/métodos , Polimorfismo de Nucleótido Simple , Cuello Femoral/diagnóstico por imagen , Reino Unido , Fracturas Osteoporóticas/genética , Vértebras Lumbares/diagnóstico por imagen , Factores de Riesgo , Adulto , Población Blanca/genética , Etnicidad/genética
7.
Comput Biol Med ; 179: 108813, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955127

RESUMEN

BACKGROUND: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. METHOD: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-scale variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. RESULTS: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved R2-scores > 0.01 for 71.55 % of metabolites. CONCLUSION: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.


Asunto(s)
Metabolómica , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Humanos , Metabolómica/métodos , Desequilibrio de Ligamiento
8.
NAR Genom Bioinform ; 6(2): lqae071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881578

RESUMEN

Mass spectrometry is a powerful and widely used tool for generating proteomics, lipidomics and metabolomics profiles, which is pivotal for elucidating biological processes and identifying biomarkers. However, missing values in mass spectrometry-based omics data may pose a critical challenge for the comprehensive identification of biomarkers and elucidation of the biological processes underlying human complex disorders. To alleviate this issue, various imputation methods for mass spectrometry-based omics data have been developed. However, a comprehensive comparison of these imputation methods is still lacking, and researchers are frequently confronted with a multitude of options without a clear rationale for method selection. To address this pressing need, we developed omicsMIC (mass spectrometry-based omics with Missing values Imputation methods Comparison platform), an interactive platform that provides researchers with a versatile framework to evaluate the performance of 28 diverse imputation methods. omicsMIC offers a nuanced perspective, acknowledging the inherent heterogeneity in biological data and the unique attributes of each dataset. Our platform empowers researchers to make data-driven decisions in imputation method selection based on real-time visualizations of the outcomes associated with different imputation strategies. The comprehensive benchmarking and versatility of omicsMIC make it a valuable tool for the scientific community engaged in mass spectrometry-based omics research. omicsMIC is freely available at https://github.com/WQLin8/omicsMIC.

9.
Int J Food Sci Nutr ; 75(6): 537-549, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38918932

RESUMEN

Cow milk consumption (CMC) and downstream alterations of serum metabolites are commonly considered important factors regulating human health status. Foods may lead to metabolic changes directly or indirectly through remodelling gut microbiota (GM). We sought to identify the metabolic alterations in Chinese Peri-/Postmenopausal women with habitual CMC and explore if the GM mediates the CMC-metabolite associations. 346 Chinese Peri-/Postmenopausal women participants were recruited in this study. Fixed effects regression and partial least squares discriminant analysis (PLS-DA) were applied to reveal alterations of serum metabolic features in different CMC groups. Spearman correlation coefficient was computed to detect metabolome-metagenome association. 36 CMC-associated metabolites including palmitic acid (FA(16:0)), 7alpha-hydroxy-4-cholesterin-3-one (7alphaC4), citrulline were identified by both fixed effects regression (FDR < 0.05) and PLS-DA (VIP score > 2). Some significant metabolite-GM associations were observed, including FA(16:0) with gut species Bacteroides ovatus, Bacteroides sp.D2. These findings would further prompt our understanding of the effect of cow milk on human health.


Asunto(s)
Microbioma Gastrointestinal , Leche , Posmenopausia , Humanos , Femenino , Animales , Persona de Mediana Edad , Posmenopausia/sangre , China , Bovinos , Citrulina/sangre , Anciano , Dieta , Metaboloma , Bacteroides , Pueblos del Este de Asia
10.
Front Artif Intell ; 7: 1355287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919268

RESUMEN

Introduction: Osteoporosis, characterized by low bone mineral density (BMD), is an increasingly serious public health issue. So far, several traditional regression models and machine learning (ML) algorithms have been proposed for predicting osteoporosis risk. However, these models have shown relatively low accuracy in clinical implementation. Recently proposed deep learning (DL) approaches, such as deep neural network (DNN), which can discover knowledge from complex hidden interactions, offer a new opportunity to improve predictive performance. In this study, we aimed to assess whether DNN can achieve a better performance in osteoporosis risk prediction. Methods: By utilizing hip BMD and extensive demographic and routine clinical data of 8,134 subjects with age more than 40 from the Louisiana Osteoporosis Study (LOS), we developed and constructed a novel DNN framework for predicting osteoporosis risk and compared its performance in osteoporosis risk prediction with four conventional ML models, namely random forest (RF), artificial neural network (ANN), k-nearest neighbor (KNN), and support vector machine (SVM), as well as a traditional regression model termed osteoporosis self-assessment tool (OST). Model performance was assessed by area under 'receiver operating curve' (AUC) and accuracy. Results: By using 16 discriminative variables, we observed that the DNN approach achieved the best predictive performance (AUC = 0.848) in classifying osteoporosis (hip BMD T-score ≤ -1.0) and non-osteoporosis risk (hip BMD T-score > -1.0) subjects, compared to the other approaches. Feature importance analysis showed that the top 10 most important variables identified by the DNN model were weight, age, gender, grip strength, height, beer drinking, diastolic pressure, alcohol drinking, smoke years, and economic level. Furthermore, we performed subsampling analysis to assess the effects of varying number of sample size and variables on the predictive performance of these tested models. Notably, we observed that the DNN model performed equally well (AUC = 0.846) even by utilizing only the top 10 most important variables for osteoporosis risk prediction. Meanwhile, the DNN model can still achieve a high predictive performance (AUC = 0.826) when sample size was reduced to 50% of the original dataset. Conclusion: In conclusion, we developed a novel DNN model which was considered to be an effective algorithm for early diagnosis and intervention of osteoporosis in the aging population.

11.
Nat Commun ; 15(1): 1281, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346959

RESUMEN

Patients with Type 2 Diabetes Mellitus are increasingly susceptible to atherosclerotic plaque vulnerability, leading to severe cardiovascular events. In this study, we demonstrate that elevated serum levels of palmitic acid, a type of saturated fatty acid, are significantly linked to this enhanced vulnerability in patients with Type 2 Diabetes Mellitus. Through a combination of human cohort studies and animal models, our research identifies a key mechanistic pathway: palmitic acid induces macrophage Delta-like ligand 4 signaling, which in turn triggers senescence in vascular smooth muscle cells. This process is critical for plaque instability due to reduced collagen synthesis and deposition. Importantly, our findings reveal that macrophage-specific knockout of Delta-like ligand 4 in atherosclerotic mice leads to reduced plaque burden and improved stability, highlighting the potential of targeting this pathway. These insights offer a promising direction for developing therapeutic strategies to mitigate cardiovascular risks in patients with Type 2 Diabetes Mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Animales , Humanos , Ratones , Apolipoproteínas E/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Ácido Palmítico/metabolismo , Placa Aterosclerótica/metabolismo
12.
ArXiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873011

RESUMEN

Background: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. Method: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-view variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. Results: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved R2-scores > 0.01 for 71.55% of metabolites. Conclusion: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.

13.
Front Endocrinol (Lausanne) ; 14: 1261088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075049

RESUMEN

Background: Hip fracture occurs when an applied force exceeds the force that the proximal femur can support (the fracture load or "strength") and can have devastating consequences with poor functional outcomes. Proximal femoral strengths for specific loading conditions can be computed by subject-specific finite element analysis (FEA) using quantitative computerized tomography (QCT) images. However, the radiation and availability of QCT limit its clinical usability. Alternative low-dose and widely available measurements, such as dual energy X-ray absorptiometry (DXA) and genetic factors, would be preferable for bone strength assessment. The aim of this paper is to design a deep learning-based model to predict proximal femoral strength using multi-view information fusion. Results: We developed new models using multi-view variational autoencoder (MVAE) for feature representation learning and a product of expert (PoE) model for multi-view information fusion. We applied the proposed models to an in-house Louisiana Osteoporosis Study (LOS) cohort with 931 male subjects, including 345 African Americans and 586 Caucasians. We performed genome-wide association studies (GWAS) to select 256 genetic variants with the lowest p-values for each proximal femoral strength and integrated whole genome sequence (WGS) features and DXA-derived imaging features to predict proximal femoral strength. The best prediction model for fall fracture load was acquired by integrating WGS features and DXA-derived imaging features. The designed models achieved the mean absolute percentage error of 18.04%, 6.84% and 7.95% for predicting proximal femoral fracture loads using linear models of fall loading, nonlinear models of fall loading, and nonlinear models of stance loading, respectively. Conclusion: The proposed models are capable of predicting proximal femoral strength using WGS features and DXA-derived imaging features. Though this tool is not a substitute for predicting FEA using QCT images, it would make improved assessment of hip fracture risk more widely available while avoiding the increased radiation exposure from QCT.


Asunto(s)
Fracturas de Cadera , Osteoporosis , Fracturas Femorales Proximales , Humanos , Masculino , Estudio de Asociación del Genoma Completo , Absorciometría de Fotón/métodos , Fracturas de Cadera/diagnóstico por imagen , Osteoporosis/diagnóstico por imagen
14.
PLoS One ; 18(11): e0289077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943870

RESUMEN

BACKGROUND: Physical activity (PA) is associated with various health benefits, especially in improving chronic health conditions. However, the metabolic changes in host metabolism in response to PA remain unclear, especially in racially/ethnically diverse populations. OBJECTIVE: This study is to assess the metabolic profiles associated with the frequency of PA in White and African American (AA) men. METHODS: Using the untargeted metabolomics data collected from 698 White and AA participants (mean age: 38.0±8.0, age range: 20-50) from the Louisiana Osteoporosis Study (LOS), we conducted linear regression models to examine metabolites that are associated with PA levels (assessed by self-reported regular exercise frequency levels: 0, 1-2, and ≥3 times per week) in White and AA men, respectively, as well as in the pooled sample. Covariates considered for statistical adjustments included race (only for the pooled sample), age, BMI, waist circumstance, smoking status, and alcohol drinking. RESULTS: Of the 1133 untargeted compounds, we identified 7 metabolites associated with PA levels in the pooled sample after covariate adjustment with a false discovery rate of 0.15. Specifically, compared to participants who did not exercise, those who exercised at a frequency ≥3 times/week showed higher abundances in uracil, orotate, 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) (GPE), threonate, and glycerate, but lower abundances in salicyluric glucuronide and adenine in the pooled sample. However, in Whites, salicyluric glucuronide and orotate were not significant. Adenine, GPE, and threonate were not significant in AAs. In addition, the seven metabolites were not significantly different between participants who exercised ≥3 times/week and 1-2 times/week, nor significantly different between participants with 1-2 times/week and 0/week in the pooled sample and respective White and AA groups. CONCLUSIONS: Metabolite responses to PA are dose sensitive and may differ between White and AA populations. The identified metabolites may help advance our knowledge of guiding precision PA interventions. Studies with rigorous study designs are warranted to elucidate the relationship between PA and metabolites.


Asunto(s)
Negro o Afroamericano , Ejercicio Físico , Metaboloma , Blanco , Adulto , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Adenina , Glucurónidos
15.
Phytomedicine ; 121: 155115, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801896

RESUMEN

BACKGROUND: Evodia Rutaecarpa-processed Coptidis Rhizoma (ECR) is a traditional Chinese medicine for the treatment of ulcerative colitis (UC) in China. However, the mechanisms underlying the ECR processing are not elucidated. PURPOSE: Coptidis Rhizoma (CR) regulates the gut microbiota in the treatment of gastrointestinal diseases. This study explored the mechanism of action of ECR before and after processing in UC in view of the regulation of gut microecology. STUDY DESIGN: A preclinical experimental investigation was performed using a mouse model of UC to examine the regulatory effect of ECR and its mechanisms through gut microbiota analysis and metabolomic assays. METHODS: Mice received 4% dextran sulfate sodium to establish a UC model and treated with ECR and CR. Colonic histopathology and inflammatory changes were observed. Gut microbiota was analyzed using 16 s rRNA sequencing. Transplants of Lactobacillus reuteri were used to explore the correlation between ECR processing and the gut microbiota. The expression of mucin-2, Lgr5, and PCNA in colonic epithelial cells was measured using immunofluorescence. Wnt3a and ß-catenin levels were detected by western blotting. The metabolites in the colon tissue were analyzed using a targeted energy metabolomic assay. The effect of energy metabolite α-ketoglutarate (α-KG) on L. reuteri growth and UC were verified in mice. RESULTS: ECR improved the effects on UC in mice compared to CR, including alleviating colonic injury and inflammation, and modulating gut microbiota by increasing L. reuteri level. L. reuteri dose-dependently alleviated colonic injury, increased mucin-2 level, and promoted colonic epithelial regeneration by increasing Lgr5 and PCNA expression. This was consistent with the results before and after ECR processing. L. reuteri promoted epithelial regeneration by upregulating Wnt/ß-catenin pathway. Moreover, ECR increased metabolites levels (especially α-KG) to promote energy metabolism in the colon tissue compared to CR. α-KG treatment increased L. reuteri level and alleviated mucosal damage in UC mice. It promoted L. reuteri growth by increasing the energy metabolic status by enhancing α-KG dehydrogenase activity. CONCLUSION: ECR processing improves the therapeutic effects of UC via the α-KG-L. reuteri-epithelial regeneration axis.


Asunto(s)
Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Evodia , Limosilactobacillus reuteri , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Ácidos Cetoglutáricos , Medicamentos Herbarios Chinos/farmacología , Mucina 2 , beta Catenina , Antígeno Nuclear de Célula en Proliferación , Colon , Modelos Animales de Enfermedad , Sulfato de Dextran , Ratones Endogámicos C57BL
16.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745599

RESUMEN

Mass spectrometry is a powerful and widely used tool for generating proteomics, lipidomics, and metabolomics profiles, which is pivotal for elucidating biological processes and identifying biomarkers. However, missing values in spectrometry-based omics data may pose a critical challenge for the comprehensive identification of biomarkers and elucidation of the biological processes underlying human complex disorders. To alleviate this issue, various imputation methods for mass spectrometry-based omics data have been developed. However, a comprehensive and systematic comparison of these imputation methods is still lacking, and researchers are frequently confronted with a multitude of options without a clear rationale for method selection. To address this pressing need, we developed omicsMIC (mass spectrometry-based omics with Missing values Imputation methods Comparison platform), an interactive platform that provides researchers with a versatile framework to simulate and evaluate the performance of 28 diverse imputation methods. omicsMIC offers a nuanced perspective, acknowledging the inherent heterogeneity in biological data and the unique attributes of each dataset. Our platform empowers researchers to make data-driven decisions in imputation method selection based on real-time visualizations of the outcomes associated with different imputation strategies. The comprehensive benchmarking and versatility of omicsMIC make it a valuable tool for the scientific community engaged in mass spectrometry-based omics research. OmicsMIC is freely available at https://github.com/WQLin8/omicsMIC.

17.
Front Endocrinol (Lausanne) ; 14: 1107511, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051201

RESUMEN

Background: While osteoimmunology interactions between the immune and skeletal systems are known to play an important role in osteoblast development, differentiation and bone metabolism related disease like osteoporosis, such interactions in either bone microenvironment or peripheral circulation in vivo at the single-cell resolution have not yet been characterized. Methods: We explored the osteoimmunology communications between immune cells and osteoblastic lineage cells (OBCs) by performing CellphoneDB and CellChat analyses with single-cell RNA sequencing (scRNA-seq) data from human femoral head. We also explored the osteoimmunology effects of immune cells in peripheral circulation on skeletal phenotypes. We used a scRNA-seq dataset of peripheral blood monocytes (PBMs) to perform deconvolution analysis. Then weighted gene co-expression network analysis (WGCNA) was used to identify monocyte subtype-specific subnetworks. We next used cell-specific network (CSN) and the least absolute shrinkage and selection operator (LASSO) to analyze the correlation of a gene subnetwork identified by WGCNA with bone mineral density (BMD). Results: We constructed immune cell and OBC communication networks and further identified L-R genes, such as JAG1 and NOTCH1/2, with ossification related functions. We also found a Mono4 related subnetwork that may relate to BMD variation in both older males and postmenopausal female subjects. Conclusions: This is the first study to identify numerous ligand-receptor pairs that likely mediate signals between immune cells and osteoblastic lineage cells. This establishes a foundation to reveal advanced and in-depth osteoimmunology interactions to better understand the relationship between local bone microenvironment and immune cells in peripheral blood and the impact on bone phenotypes.


Asunto(s)
Huesos , Osteoporosis , Femenino , Humanos , Densidad Ósea/genética , Osteoporosis/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
18.
Clin Epigenetics ; 15(1): 42, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915112

RESUMEN

BACKGROUND: Clinical trials have shown zoledronic acid as a potent bisphosphonate in preventing bone loss, but with varying potency between patients. Human osteoclasts ex vivo reportedly displayed a variable sensitivity to zoledronic acid > 200-fold, determined by the half-maximal inhibitory concentration (IC50), with cigarette smoking as one of the reported contributors to this variation. To reveal the molecular basis of the smoking-mediated variation on treatment sensitivity, we performed a DNA methylome profiling on whole blood cells from 34 healthy female blood donors. Multiple regression models were fitted to associate DNA methylation with ex vivo determined IC50 values, smoking, and their interaction adjusting for age and cell compositions. RESULTS: We identified 59 CpGs displaying genome-wide significance (p < 1e-08) with a false discovery rate (FDR) < 0.05 for the smoking-dependent association with IC50. Among them, 3 CpGs have p < 1e-08 and FDR < 2e-03. By comparing with genome-wide association studies, 15 significant CpGs were locally enriched (within < 50,000 bp) by SNPs associated with bone and body size measures. Furthermore, through a replication analysis using data from a published multi-omics association study on bone mineral density (BMD), we could validate that 29 out of the 59 CpGs were in close vicinity of genomic sites significantly associated with BMD. Gene Ontology (GO) analysis on genes linked to the 59 CpGs displaying smoking-dependent association with IC50, detected 18 significant GO terms including cation:cation antiporter activity, extracellular matrix conferring tensile strength, ligand-gated ion channel activity, etc. CONCLUSIONS: Our results suggest that smoking mediates individual sensitivity to zoledronic acid treatment through epigenetic regulation. Our novel findings could have important clinical implications since DNA methylation analysis may enable personalized zoledronic acid treatment.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Femenino , Ácido Zoledrónico/farmacología , Estudio de Asociación del Genoma Completo/métodos , Epigenoma , Osteoclastos , Fumar/efectos adversos , Fumar/genética , Islas de CpG
19.
J Ethnopharmacol ; 303: 116007, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473618

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglian pill (XLP), a traditional Chinese formula, is widely used as treatment for ulcerative colitis (UC) in China. However, the mechanism of its therapeutic effect is still unclear. AIM OF THE STUDY: Our previous studies showed a low oral bioavailability and a predominant distribution of major XLP ingredients in the gut. In the present study, we aimed to explore the mechanism of action of XLP on UC with respect to the regulation of gut microecology. MATERIALS AND METHODS: UC model rats established using 5% dextran sulfate sodium were treated with XLP. After the treatment period, bodyweight, colon length, histopathology, and inflammatory changes were evaluated. Further, changes in gut microbiota structure were detected via 16S rRNA sequencing, and microbial metabolites in feces were analyzed via a metabolomic assay. Antibiotic intervention and fecal microbiota transplantation were also employed to explore the involvement of gut microbiota, while the level of regulatory T cells (Tregs) in mesenteric lymph nodes was determined via flow cytometry. Transcriptome sequencing was also performed to determine colonic gene changes. RESULTS: XLP alleviated colonic injury, inflammation, and gut microbial dysbiosis in UC model rats and also changed microbial metabolite levels. Particularly, it significantly decreased succinate level in the tyrosine pathway. We also observed that fecal microbiota derived from XLP-treated rats conferred resilience to UC model rats. However, this therapeutic effect of XLP on UC was inhibited by succinate. Moreover, XLP increased the level of anti-inflammatory cellular Tregs via gut microbiota. However, this beneficial effect was counteracted by succinate supplementation. Further, XLP induced the differentiation of Treg possibly by the regulation of the PHD2/HIF-1α pathway via decreasing microbial succinate production. CONCLUSIONS: Our findings indicated that XLP exerts its therapeutic effects on UC mainly via the gut microbiota-succinate-Treg differentiation axis.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Ratas , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Linfocitos T Reguladores , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Ácido Succínico/uso terapéutico , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Colon , Succinatos/farmacología , Sulfato de Dextran/toxicidad , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad
20.
J Med Case Rep ; 16(1): 459, 2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36496425

RESUMEN

BACKGROUND: Multiple myeloma remains incurable despite treatment advancements over the last 20 years. LCAR-B38M Cells in Treating Relapsed/Refractory Multiple Myeloma was a phase 1, first-in-human, investigator-initiated study in relapsed/refractory multiple myeloma conducted at four sites in China. The study used LCAR-B38M chimeric antigen receptor-T cells expressing two B-cell maturation antigen-targeting single-domain antibodies designed to confer avidity, and a CD3ζ signaling domain with a 4-1BB costimulatory domain to optimize T-cell activation and proliferation. This chimeric antigen receptor construct is identical to ciltacabtagene autoleucel. In the LEGEND-2 study (n = 57, Xi'an site), overall response rate was 88%; median (95% CI) progression-free survival and overall survival were 19.9 (9.6-31.0) and 36.1 (26.4-not evaluable) months, respectively; and median follow-up was 25 months. This case study reports on a patient with relapsed/refractory multiple myeloma (λ light chain type) who was treated with LCAR-B38M chimeric antigen receptor T cells in the LEGEND-2 study (Xi'an site); he had received five prior lines of treatment and had extensive extramedullary lesions. CASE PRESENTATION: The patient, a 56-year-old Asian male, received cyclophosphamide (500 mg daily × 3 days) as lymphodepletion therapy and a total dose of 0.5 × 106 chimeric antigen receptor + T cells/kg split into three infusions (days 1, 24, and 84 from June to August 2016). He experienced grade 2 cytokine release syndrome after the first infusion; all symptoms resolved with treatment. No cytokine release syndrome occurred following the second and third infusions. His λ light chain levels decreased and normalized 20 days after the first infusion, and extramedullary lesions were healed as of January 2018. He has sustained remission for 5 years and received no other multiple myeloma treatments after LCAR-B38M chimeric antigen receptor T cell infusion. As of 30 October 2020, the patient is still progression-free and has maintained minimal residual disease-negative (10-4) complete response status for 52 months. CONCLUSIONS: This case provides support that treatment with LCAR-B38M chimeric antigen receptor T cells can result in long-term disease remission of 5 or more years without disease progression in a heavily pretreated patient with extensive extramedullary disease and no other treatment options.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Masculino , Humanos , Persona de Mediana Edad , Receptores Quiméricos de Antígenos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Antígeno de Maduración de Linfocitos B , Linfocitos T/patología , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA