Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(6): 1129-1139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637692

RESUMEN

Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.


Asunto(s)
Arabidopsis , Polen , Arabidopsis/genética , Arabidopsis/fisiología , Brassicaceae/genética , Brassicaceae/fisiología , Autoincompatibilidad en las Plantas con Flores , Polinización , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Capsella/genética
2.
Metabolites ; 13(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37755288

RESUMEN

Jasmonates (JAs), including jasmonic acid (JA), its precursor 12-oxo-phytodienoic acid (OPDA) and its derivatives jasmonoyl-isoleucine (JA-Ile), methyl jasmonate (MeJA), cis-jasmone (CJ) and other oxylipins, are important in the regulation of a range of ecological interactions of plants with their abiotic and particularly their biotic environments. Plant secondary/specialized metabolites play critical roles in implementing these ecological functions of JAs. Pathway and transcriptional regulation analyses have established a central role of JA-Ile-mediated core signaling in promoting the biosynthesis of a great diversity of secondary metabolites. Here, we summarized the advances in JAs-induced secondary metabolites, particularly in secondary metabolites induced by OPDA and volatile organic compounds (VOCs) induced by CJ through signaling independent of JA-Ile. The roles of JAs in integrating and coordinating the primary and secondary metabolism, thereby orchestrating plant growth-defense tradeoffs, were highlighted and discussed. Finally, we provided perspectives on the improvement of the adaptability and resilience of plants to changing environments and the production of valuable phytochemicals by exploiting JAs-regulated secondary metabolites.

3.
Genes (Basel) ; 13(4)2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35456410

RESUMEN

The plant protein phosphatase 2C (PP2C) plays an irreplaceable role in phytohormone signaling, developmental processes, and manifold stresses. However, information about the PP2C gene family in tomato (Solanum lycopersicum) is relatively restricted. In this study, a genome-wide investigation of the SlPP2C gene family was performed. A total of 92 SlPP2C genes were identified, they were distributed on 11 chromosomes, and all the SlPP2C proteins have the type 2C phosphatase domains. Based on phylogenetic analysis of PP2C genes in Arabidopsis, rice, and tomato, SlPP2C genes were divided into eight groups, designated A-H, which is also supported by the analyses of gene structures and protein motifs. Gene duplication analysis revealed that the duplication of whole genome and chromosome segments was the main cause of SLPP2Cs expansion. A total of 26 cis-elements related to stress, hormones, and development were identified in the 3 kb upstream region of these SlPP2C genes. Expression profile analysis revealed that the SlPP2C genes display diverse expression patterns in various tomato tissues. Furthermore, we investigated the expression patterns of SlPP2C genes in response to Ralstonia solanacearum infection. RNA-seq and qRT-PCR data reveal that nine SlPP2Cs are correlated with R. solanacearum. The above evidence hinted that SlPP2C genes play multiple roles in tomato and may contribute to tomato resistance to bacterial wilt. This study obtained here will give an impetus to the understanding of the potential function of SlPP2Cs and lay a solid foundation for tomato breeding and transgenic resistance to plant pathogens.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Filogenia , Fitomejoramiento , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
4.
Anticancer Agents Med Chem ; 15(2): 228-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24893804

RESUMEN

This study aimed to isolate terpenoids from Alisma orientalis (Sam.) Juzep. and elucidate their antiproliferative activities, as well as structure-activity relationships. Fourteen protostane-type triterpenoids were isolated from the rhizome of A. orientalis. Among these triterpenoids, alisol A (1), alisol A 24-acetate (2), alisol B (3), alisol B 23-acetate (4), and alisol G (8) presented inhibitory effects on cancer cell lines tested. Compounds 3 and 4 showed the highest potential; IC50 values for HepG2, MDA-MB-231, and MCF-7 cells were 16.28, 14.47, and 6.66 µM for 3 and 18.01, 15.97, and 13.56 µM for 4, respectively. Based on these results, we concluded that the degree of C-16 oxidation and the double bond between C-13 and C-17 may be significant in anti-proliferative activities. Further study showed that 3 and 4 effectively induced apoptosis, as confirmed by flow cytometry. Increased intracellular calcium concentration and endoplasmic reticulum stress were detected after treatment with 4 in HepG2 cells. Although compounds 1 and 2 induced minimal apoptosis, they evidently delayed the G2/M phase in HepG2 cells. Further study showed that 1-4 also enhanced LC3II expression, indicating autophagy is occured.


Asunto(s)
Alisma/química , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Terpenos/química , Terpenos/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Línea Celular Tumoral , Colestenonas/química , Colestenonas/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Células MCF-7 , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA