Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844461

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Antiviral Agents , High-Throughput Screening Assays , Nitro Compounds , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Thiazoles , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Nitro Compounds/pharmacology , Swine , Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Thiazoles/pharmacology , Virus Replication/drug effects , Cell Line , Viremia/drug therapy , Viremia/virology
2.
Molecules ; 28(20)2023 Oct 20.
Article En | MEDLINE | ID: mdl-37894672

Lekethromycin (LKMS) is a synthetic macrolide compound derivative intended for use as a veterinary medicine. Since there have been no in vitro studies evaluating its potential for drug-drug interactions related to cytochrome P450 (CYP450) enzymes, the effect of the inhibitory mechanisms of LKMS on CYP450 enzymes is still unclear. Thus, this study aimed to evaluate the inhibitory effects of LKMS on dog CYP450 enzymes. A cocktail approach using ultra-performance liquid chromatography-tandem mass spectrometry was conducted to investigate the inhibitory effect of LKMS on canine CYP450 enzymes. Typical probe substrates of phenacetin, coumarin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and testosterone were used for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. This study showed that LKMS might not be a time-dependent inhibitor. LKMS inhibited CYP2A6, CYP2B6, and CYP2D6 via mixed inhibition. LKMS exhibited mixed-type inhibition against the activity of CYP2A6 with an inhibition constant (Ki) value of 135.6 µΜ. LKMS inhibited CYP2B6 in a mixed way, with Ki values of 59.44 µM. A phenotyping study based on an inhibition assay indicated that CYP2D6 contributes to the biotransformation of LKMS. A mixed inhibition of CYP2D6 with Ki values of 64.87 µM was also observed. Given that this study was performed in vitro, further in vivo studies should be conducted to identify the interaction between LKMS and canine CYP450 enzymes to provide data support for the clinical application of LKMS and the avoidance of adverse interactions between other drugs.


Cytochrome P-450 CYP2D6 , Tandem Mass Spectrometry , Dogs , Animals , Chromatography, Liquid , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6/pharmacology , Microsomes, Liver/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism
3.
Article En | MEDLINE | ID: mdl-37390773

Lekethromycin (LKMS), a novel semi-synthetic macrolide lactone, had the characteristics of high plasma protein binding rate, fast absorption, slow elimination, and wide distribution in rat pharmacokinetics studies. A reliable analytical ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based method was established by using tulathromycin and TLM (CP-60, 300) as internal standards for detection of LKMS and LKMS-HA, respectively. Samples preparation and UPLC-MS/MS conditions were optimized for complete and accurate quantification. Tissue samples were extracted with 1% formic acid in acetonitrile and purified by PCX cartridges. According to FDA and EMA guidelines for bioanalytical method, several rat characteristic tissues were selected for method validation, such as muscle, lung, spleen, liver, kidney, and intestines. The transitions m/z 402.900 > 158.300, m/z 577.372 > 158.309, m/z 404.200 > 158.200, and m/z 577.372 > 116.253 were monitored and quantified for LKMS, LKMS-HA, tulathromycin and TLM, respectively. According to the ratio with IS peak aera, the accuracy and precision of LKMS were 84.31%-112.50% with RSD 0.93%-9.79% and LKMS-HA were 84.62%-103.96% with RSD 0.73%-10.69%, and the method had been established and complied with FDA, EU, and Japanese guidelines. Finally, this method was applied to detect LKMS and LKMS-HA in plasma and tissues of pneumonia-infected rats that were intramuscularly administered and treated with LKMS intramuscular injection of 5 mg/kg BW and 10 mg/kg BW, and the characteristics of pharmacokinetics and tissue distribution were compared with normal rats.


Pneumonia , Tandem Mass Spectrometry , Rats , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods , Reproducibility of Results
4.
Vet Sci ; 10(6)2023 Jun 18.
Article En | MEDLINE | ID: mdl-37368785

This study aimed to evaluate the absolute bioavailability of cyclosporine in cats by investigating the pharmacokinetic profile after intravenous and oral administration, respectively. Twenty-four clinically healthy cats were enrolled in this study and randomly divided into four groups, namely the intravenous group (3 mg/kg), low oral group (3.5 mg/kg), medium oral group (7 mg/kg), and high oral group (14 mg/kg). Whole blood was obtained at the scheduled time points after a single dose administration and cyclosporine was determined using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS). Pharmacokinetic parameters were calculated using the WinNonlin 8.3.4 software via compartmental and non-compartmental models. As a result, the bioavailability values for the low, medium, and high oral groups were 14.64%, 36.98%, and 13.53%, respectively. The nonlinear pharmacokinetic profile was observed in the range from 3.5 mg/kg to 14 mg/kg in cats following oral administration. Whole blood concentrations taken 4 h after oral administration were better correlated with the area under the blood concentration-time curve AUC0-24 with a high regression coefficient (R2 = 0.896). This concentration would be a greater predictor in the following therapeutic drug monitoring. No adverse effect was observed in the whole study process.

5.
Antibiotics (Basel) ; 11(9)2022 Sep 13.
Article En | MEDLINE | ID: mdl-36140019

Lekethromycin (LKMS), a novel macrolide lactone, is still unclear regarding its absorption. Thus, we conducted this study to investigate the characteristics of LKMS in rats. We chose the ultrafiltration method to measure the plasma protein binding rate of LKMS. As a result, LKMS was characterized by quick absorption, delayed elimination, and extensive distribution in rats following intramuscular (im) and subcutaneous (sc) administration. Moreover, LKMS has a high protein binding rate (78-91%) in rats at a concentration range of 10-800 ng/mL. LKMS bioavailability was found to be approximately 84-139% and 52-77% after im and sc administration, respectively; however, LKMS was found to have extremely poor bioavailability after oral administration (po) in rats. The pharmacokinetic parameters cannot be considered linearly correlated with the administered dose. Additionally, LKMS and its corresponding metabolites were shown to be metabolically stable in the liver microsomes of rats, dogs, pigs, and humans. Notably, only one phase I metabolite was identified during in vitro study, suggesting most of drug was not converted. Collectively, LKMS had quick absorption but poor absorption after oral administration, extensive tissue distribution, metabolic stability, and slow elimination in rats.

6.
Front Vet Sci ; 9: 940472, 2022.
Article En | MEDLINE | ID: mdl-36032284

The pharmacokinetic profiles and bioequivalence of two cyclosporine oral solutions were investigated in cats. Twenty-four cats were randomly allocated to two equally sized treatment groups in a randomized four-cycle, and dual-sequence cross-over design. Test and reference articles were orally administered in a single dose of 7 mg/kg Bodyweight. Serial blood samples were collected, and blood cyclosporine concentration was determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). No significant differences were present in the major pharmacokinetic parameters (Cmax, AUC0-last,) between the two formulations. The blood profiles of cyclosporine following the administration of both formulations were similar. The findings of the study suggested that the two articles were bioequivalent for cyclosporine oral solution.

7.
Front Vet Sci ; 9: 951176, 2022.
Article En | MEDLINE | ID: mdl-35990262

Tumors are becoming a serious threat to the quality of life of human and dogs. Studies have shown that tumors have caused more than half of the deaths in older dogs. Similar to human, dogs will develop various and highly heterogeneous tumors, but there are currently no viable therapies for them. In human, immunotherapy has been used widely and considered as an effective treatment for tumors by immune checkpoint targets, which are also expressed on canine tumors, suggesting that immunotherapy may be a potential treatment for canine tumors. In this work, we developed a sandwich ELISA method to detect the concentration of recombinant canine PD-1 fusion protein in canine serum and investigated pharmacokinetics in canines after intravenous infusion administration. After being validated, the ELISA method showed an excellent linear relationship in 25.00-3,200.00 ng/ml in serum, and the R 2 was more than 0.99 with four-parameter fitting. The precision and accuracy of intra-assay and inter-assay at the five different concentrations met the requirements of quantitative analysis. At the same time, no hook effect was observed at the concentration above ULOQ, and the stability was good under different predicted conditions with accuracy > 80%. The pharmacokinetic study in dogs has shown that the recombinant canine PD-1 fusion protein exhibited a typical biphasic PK profile after intravenous infusion administration, and the linear pharmacokinetic properties were observed between 1.00 and 12.00 mg/kg. Meanwhile, the T1/2 after intravenous infusion administration with non-compartmental analysis was about 5.79 days.

8.
Front Vet Sci ; 9: 884357, 2022.
Article En | MEDLINE | ID: mdl-35464368

The objectives of this study were to elucidate absorption, tissue distribution, excretion, and metabolism of vitacoxib, a novel selective cyclooxygenase-2 inhibitor, in Wistar rats. Vitacoxib was detected in most tissues within 15 min, suggesting that it was well distributed. Moreover, it could cross the intestinal barrier. Vitacoxib was mainly eliminated as two metabolites. Nine proposed metabolites of vitacoxib were found in the plasma, bile, urine, and feces of rats. Two main metabolites, 4-(4-chloro-1-(5-(methyl-sulfonyl) pyridin-2-yl)-1H-imidazol-5-yl) phenyl methanol (M1) and 4-(4-chloro-1-(5-(methyl-sulfonyl) pyridin-2-yl)-1H-imidazol-5-yl) benzoic acid (M2), were identified in rat feces and urine. Further, the authentic standards of M1 and M2 were synthesized to confirm their structures. The carboxylic acid derivative was the major metabolite of vitacoxib excreted in the urine and feces. Hydroxylation of the aromatic methyl group of vitacoxib and additional oxidation of the hydroxymethyl metabolite to a carboxylic acid metabolite were the proposed metabolic pathways. Vitacoxib displayed a high AUC last (4895.73 ± 604.34 ng·h/ml), long half-life (4.25 ± 0.30 h), slow absorption (T max , 5.00 ± 2.00 h), and wide tissue distribution in rats. Our findings provide significant information for the further development and investigation of vitacoxib as an effective nonsteroidal anti-inflammatory agent, and highly its potential for use future in a clinical setting.

9.
BMC Vet Res ; 18(1): 136, 2022 Apr 11.
Article En | MEDLINE | ID: mdl-35410205

BACKGROUND: Buserelin is a luteinizing hormone releasing hormone (LHRH) agonist used for the treatment of hormone-dependent diseases in males and females. However, the pharmacokinetics of buserelin in pigs and cows are not fully understood. This study was designed to develop a sensitive method to determine the concentration of buserelin in blood plasma and to investigate the pharmacokinetic parameters after intramuscular (i.m.) administration in pigs and cows. RESULTS: A sensitive and rapid stability method based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed. The pharmacokinetic parameters of buserelin after i.m. administration were studied in five pigs and five cows at a single dose of 1 mg per pig and 3 mg per cow. The plasma kinetics were analyzed by WinNonlin 8.1.0 software using a non-compartmental model. The mean concentration area under the curve (AUC0-t) was 25.02 ± 6.93 h × ng/mL for pigs and 5.63 ± 1.86 h × ng/mL for cows. The maximum plasma concentration (Cmax) and time to reach the maximum concentration (tmax) were 10.99 ± 2.04 ng/mL and 0.57 ± 0.18 h for pigs and 2.68 ± 0.36 ng/mL and 1.05 ± 0.27 h for cows, respectively. The apparent volume of distribution (Vz) in pigs and cows was 80.49 ± 43.88 L and 839.88 ± 174.77 L, respectively. The elimination half-time (t1/2), and clearance (CL) were 1.29 ± 0.40 h and 41.15 ± 11.18 L/h for pigs and 1.13 ± 0.3 h and 545.04 ± 166.40 L/h for cows, respectively. No adverse effects were observed in any of the animals. CONCLUSION: This study extends previous studies describing the pharmacokinetics of buserelin following i.m. administration in pigs and cows. Further studies investigating other factors were needed to establish therapeutic protocol in pigs and cows and to extrapolate these parameters to others economic animals.


Buserelin , Tandem Mass Spectrometry , Animals , Area Under Curve , Biological Availability , Cattle , Chromatography, Liquid/veterinary , Female , Male , Swine , Tandem Mass Spectrometry/veterinary
10.
mBio ; 13(1): e0191621, 2022 02 22.
Article En | MEDLINE | ID: mdl-35012347

Typhoid toxin is an A2B5 protein toxin and an important virulence factor for the human-adapted bacterial pathogen Salmonella enterica serovar Typhi, the causative agent of typhoid fever. Typhoid toxin contains two enzymatic subunits, PltA and CdtB, which dock onto a pentameric delivery platform composed of the protein PltB. It was recently reported that the same enzymatic subunits can assemble with a different delivery platform composed of the protein PltC, forming a distinct version of typhoid toxin. However, the differences in structure and receptor specificity between the PltC and PltB typhoid toxins remain unknown. Here, we determined atomic-level structures of the pentameric PltC subunit, the fully assembled PltC typhoid toxin, and the PltC pentamers in complex with glycan receptors. Biochemical and structural analyses indicate that PltB and PltC are unable to form heteromeric delivery complexes due to electrostatic repulsion at the subunit interface and thus form separate toxins only. We further observed that, despite low sequence similarity between PltB and PltC, they interact with PltA in a similar manner but that PltC exhibits stronger electrostatic interactions with PltA, enabling it to outcompete PltB in toxin assembly. The ligand-bound atomic structures of PltC show an additional glycan binding site not found in PltB and glycan array analysis indicates that PltB and PltC exhibit significant differences in glycan binding specificity. Collectively, this study offers atomic-level insights into how S. Typhi produces two distinct versions of typhoid toxin, thereby generating functional diversity in this key virulence factor. IMPORTANCE Typhoid fever is a devastating disease that kills more than 115,000 people every year and is caused by Salmonella Typhi. Typhoid toxin, exclusively produced by S. Typhi, was demonstrated to be responsible for the pathogenesis of typhoid fever. Typhoid toxin consists of a pentameric delivery B subunit to transport the catalytic A subunits into the host cell through binding of the glycan receptors. Recent study shows that S. Typhi encodes two homologous delivery B subunits that are able to associate with the same active subunits to produce alternative toxins with distinct functional characteristics. Here, we show that the two delivery subunits can form only homopentameric delivery platforms that compete to associate with typhoid toxin's active subunits and that the two resulting toxins have distinct glycan-binding properties that confer distinct functional traits. These findings highlight the unique assembly and functional diversification of typhoid toxins.


Bacterial Toxins , Typhoid Fever , Humans , Typhoid Fever/microbiology , Bacterial Toxins/metabolism , Salmonella typhi , Virulence Factors/metabolism , Polysaccharides/metabolism
11.
J Vet Pharmacol Ther ; 44(5): 850-853, 2021 Sep.
Article En | MEDLINE | ID: mdl-34165196

The aminoglycoside antibiotic neomycin, which is used to treat external or internal bacterial infections, is primarily administered in veterinary medicine as a sulfate salt. However, no information is available on the pharmacokinetic characteristics and absolute availability of neomycin sulfate after intravenous (i.v.) and oral (p.o.) administrations in swine. Here, these parameters were studied in swine after i.v. and p.o. doses of single 15 mg/kg body weight doses. The blood samples were assessed using ultra-high-performance liquid chromatography-tandem mass/mass spectrometry (UPLC-MS/MS) and pharmacokinetic parameters were analyzed using a non-compartmental model. In swine, after the p.o. administration, the elimination half-life, mean residue time from t0 to the last collection point, mean maximum concentration, mean time to reach maximum concentration and area under concentration-time curve from t0 to the last collection point values were 12.43 ± 7.63 h, 10.25 ± 4.32 h, 0.11 ± 0.07 µg/ml, 1.92 ± 0.97 h and 1.23 ± 0.78 µg·h/ml, respectively, whereas after the i.v. administration, the values were 5.87 ± 1.12 h, 6.07 ± 0.49 h, 15.80 ± 1.32 µg/ml, 0.30 ± 0.38 h and 76.14 ± 3.52 µg·h/ml, respectively. The absolute bioavailability of neomycin sulfate B was 4.84%±0.03.


Neomycin , Tandem Mass Spectrometry , Administration, Oral , Animals , Area Under Curve , Biological Availability , Chromatography, High Pressure Liquid/veterinary , Chromatography, Liquid/veterinary , Half-Life , Injections, Intravenous/veterinary , Swine , Tandem Mass Spectrometry/veterinary
12.
Molecules ; 25(20)2020 Oct 13.
Article En | MEDLINE | ID: mdl-33066303

Lekethromycin, a new macrolide lactone, exhibits significant antibacterial activity. In this study, a reliable analytical ultrahigh-performance liquid chromatography electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UPLC-ESI-Orbitrap-MS) method was established and validated for the detection of lekethromycin in rat plasma. After a simple acetonitrile (ACN)-mediated plasma protein precipitation, chromatographic separation was performed on a Phenomenex Luna Omega PS C18 column (30 × 2.1 mm i.d. particle size = 3 µm) conducted in a gradient elution procedure using 0.5% formic acid (FA) in ACN and 0.5% FA in water as the mobile phase pumped at a flow rate of 0.3 mL/min. Detection was carried out under positive electrospray ionization (ESI+) conditions in parallel reaction monitoring (PRM) mode with observation of m/z 804.5580 > 577.4056 for lekethromycin and 777.5471 > 619.4522 for gamithromycin (internal standard, IS). The linear range was 5-1000 ng/mL (r2 > 0.99), and the lower limit of quantification (LLOQ) was 5 ng/mL. The intra- and inter-day precision (expressed as relative standard deviation, RSD) values were ≤7.3% and ≤6.3%, respectively, and the accuracy was ≥90% ± 5.3%. The mean extraction recovery RSD valWeue was <5.1%. Matrix effects and dilution integrity RSD values were <5.6% and <3.2%, respectively. Lekethromycin was deemed stable under certain storage conditions. This fully validated method was effectively applied to study the pharmacokinetics of lekethromycin after a single intravenous administration of 5 mg/kg in rats. The main pharmacokinetic parameters were T1/2λz, CL_obs and VZ_obs were 32.33 ± 14.63 h, 0.58 ± 0.17 L/h/kg and 25.56 ± 7.93 L/kg, respectively.


Chromatography, High Pressure Liquid/methods , Macrolides/blood , Macrolides/pharmacokinetics , Tandem Mass Spectrometry/methods , Administration, Intravenous , Animals , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/pharmacokinetics , Calibration , Drug Stability , Lactones/blood , Lactones/pharmacokinetics , Male , Rats, Sprague-Dawley , Reproducibility of Results
13.
Front Vet Sci ; 7: 554033, 2020.
Article En | MEDLINE | ID: mdl-33102567

The objective of this study was to develop a non-linear mixed-effects (NLME) model to describe the disposition kinetics of vitacoxib in cats following intravenous (I.V) and oral (P.O) (single and multiple) dosing. Data from six consecutive studies with 16 healthy neutered domestic short hair cats were pooled together to build a pharmacokinetic (PK) model using NLME. Population PK parameters were estimated using the stochastic approximation expectation maximization (SAEM) algorithm implemented in Monolix 2019R2. A two-compartment mammillary disposition model with simultaneous zero- and first-order absorption best described the PK of vitacoxib in plasma after oral dosing. The systemic CL of vitacoxib was found to be low (110 ml/h), with a steady-state volume of distribution (VSS) of 3.42 L in cats. Results from the automated covariate search in Monolix 2019R2 showed that bodyweight had a significant effect on the central volume of distribution of vitacoxib. Lastly, using Monte Carlo simulations, we investigated the time course of several dosages of vitacoxib from 0.01 to 8 mg/kg. Using this simulation set, we found a range of reasonable dosages that produce therapeutic plasma concentrations of vitacoxib for 24 h or more in cats.

14.
J Vet Pharmacol Ther ; 43(4): 364-368, 2020 Jul.
Article En | MEDLINE | ID: mdl-32162352

The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz ) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax ) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast ) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.


Horses/metabolism , Imidazoles/pharmacokinetics , Sulfones/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Biological Availability , Cross-Over Studies , Female , Half-Life , Horses/blood , Imidazoles/administration & dosage , Imidazoles/chemistry , Injections, Intravenous/veterinary , Male , Sulfones/administration & dosage , Sulfones/chemistry
15.
Front Vet Sci ; 6: 363, 2019.
Article En | MEDLINE | ID: mdl-31681816

Ceftiofur (CEF) sodium is a third-generation broad-spectrum cephalosporin commonly used in an extra-label manner in dogs for the treatment of respiratory and urinary system infections. To contribute to the literature supporting CEF use in companion animals, we have developed a compartmental, non-linear mixed-effects (NLME) model of CEF pharmacokinetics in dogs (PK). We then used the mathematical model to predict (via Monte Carlo simulation) the duration of time for which plasma concentrations of CEF and its pharmacologically active metabolites remained above minimum inhibitory concentrations (respiratory tract Escherichia coli spp.). Twelve healthy beagle dogs were administered either 2.2 mg/kg ceftiofur-sodium (CEF-Na) intravenously (I.V) or 2.2 mg/kg CEF-Na subcutaneously (S.C). Plasma samples were collected over a period of 72 h post-administration. To produce a measurement of total CEF, both CEF and CEF metabolites were derivatized into desfuroylceftiofur acetamide (DCA) before analysis by UPLC-MS/MS. No adverse effects were reported after I.V or S.C dosing. The NLME PK models were parameterized using the stochastic approximation expectation maximization algorithm as implemented in Monolix 2018R2. A two-compartment mamillary model with first-order elimination and first-order S.C absorption best described the available kinetic data. Final parameter estimates indicate that CEF has a low systemic clearance (0.25 L/h/kg) associated with a low global extraction ratio E = 0.02) and a moderate volume of distribution (2.97 L/kg) in dogs. The absolute bioavailability after S.C administration was high (93.7%). Gender was determined to be a significant covariate in explaining the variability of S.C absorption. Our simulations predicted that a dose of 2.2 mg/kg CEF-Na S.C would produce median plasma concentrations of CEF of at least 0.5 µg/mL (MIC50) for ~30 h.

16.
J Vet Pharmacol Ther ; 42(5): 530-540, 2019 Sep.
Article En | MEDLINE | ID: mdl-31369157

The objective of this study was to develop a nonlinear mixed-effects model of vitacoxib disposition kinetics in dogs after intravenous (I.V.), oral (P.O.), and subcutaneous (S.C.) dosing. Data were pooled from four consecutive pharmacokinetic studies in which vitacoxib was administered in various dosing regimens to 14 healthy beagle dogs. Plasma concentration versus time data were fitted simultaneously using the stochastic approximation expectation maximization (SAEM) algorithm for nonlinear mixed-effects as implemented in Monolix version 2018R2. Correlations between random effects and significance of covariates on population parameter estimates were evaluated using multiple samples from the posterior distribution of the random effects. A two-compartment mamillary model with first-order elimination and first-order absorption after P.O. and S.C. administration, best described the available pharmacokinetic data. Final parameter estimates indicate that vitacoxib has a low-to-moderate systemic clearance (0.35 L hr-1  kg-1 ) associated with a low global extraction ratio, but a large volume of distribution (6.43 L/kg). The absolute bioavailability after P.O. and S.C. administration was estimated at 10.5% (fasted) and 54.6%, respectively. Food intake was found to increase vitacoxib oral bioavailability by a fivefold, while bodyweight (BW) had a significant impact on systemic clearance, thereby confirming the need for BW adjustment with vitacoxib dosing in dogs.


Computer Simulation , Cyclooxygenase 2 Inhibitors/pharmacokinetics , Imidazoles/pharmacokinetics , Models, Biological , Sulfones/pharmacokinetics , Administration, Intravenous , Administration, Oral , Animals , Cyclooxygenase 2 Inhibitors/blood , Dogs , Female , Imidazoles/blood , Male , Monte Carlo Method , Sulfones/blood
17.
J Vet Pharmacol Ther ; 42(6): 660-664, 2019 Nov.
Article En | MEDLINE | ID: mdl-31222770

Altrenogest, a synthetic progestogen, is characterized by its estrus synchronization in mares, ewes, sows, and gilts. To investigate the pharmacokinetic profile and evaluate its accumulation in gilts, 18 oral doses of 20 mg altrenogest/gilt/day were given to eight healthy gilts at an interval of 24 hr. Plasma samples were collected, and altrenogest was determined by ultra-high-performance liquid chromatography with mass spectrometry. WinNonlin 6.4 software was used to calculate the pharmacokinetic parameters through noncompartmental model analysis. After the first administration (D 1), the pharmacokinetic parameters, including Tmax , Cmax , and the elimination half-life (T1/2λz ), were similar to those observed after the final administration (D 18). However, the mean residence time at D 1 was significantly lower than D 18. As a whole, the mean steady-state plasma concentration (Css ), degree fluctuation (DF), accumulation factor (Rac ), and area under the plasma concentration-time curve in steady state (AUCss ) were 22.69 ± 6.15 ng/ml, 270.64 ± 42.51%, 1.53 ± 0.23, and 544.63 ± 147.49 ng hr/ml, respectively. These results showed that after 18 consecutive days of oral administration of altrenogest, plasma concentrations of altrenogest had a certain degree of fluctuation, without significant accumulations.


Progesterone Congeners/pharmacokinetics , Swine/blood , Trenbolone Acetate/analogs & derivatives , Administration, Oral , Animals , Area Under Curve , Female , Half-Life , Progesterone Congeners/blood , Trenbolone Acetate/administration & dosage , Trenbolone Acetate/blood , Trenbolone Acetate/pharmacokinetics
18.
Sci Rep ; 7(1): 13074, 2017 10 12.
Article En | MEDLINE | ID: mdl-29026095

Evidences have showed that the deprivation of vision can considerably alter the resting-state activity both within and beyond the visual cortices. However, the functional changes of the brain cortices related to partially vision-deprivation are still largely unknown. Using resting-state functional MR imaging, we quantitatively evaluated the regional homogeneity(ReHo) and functional connectivity(FC) changes between 25 pituitary adenoma patients with visual impairment and 25 healthy controls(HCs). Compared with HCs, PAs exhibited significant increased ReHo in the left superior occipital gyrus, bilateral middle occipital gyrus and reduced ReHo in the left inferior frontal gyrus and right middle temporal gyrus. PAs also showed decreased FC between vision-related area and higher-order cognitive brain areas. Furthermore, we identified that in the PAs group the FC between the left V1 and left V3 increased while the FC between left V2v and left V5 significantly decreased, the FC between left V4 area and the V3, V2d area increased. In our study, we identified that the ReHo and FC were altered between the vision-related cortices and other higher-order cognitive cortices along with disorganized functional connectivity within the visual system in PAs with visual impairment. These findings may provide important insights to understand the plasticity of visual network.


Brain/physiopathology , Pituitary Neoplasms/diagnostic imaging , Pituitary Neoplasms/physiopathology , Vision Disorders/physiopathology , Adult , Brain Mapping , Cerebral Cortex/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Visual Cortex/physiopathology
...