Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Front Neurosci ; 17: 1312676, 2023.
Article En | MEDLINE | ID: mdl-38144207

Objective: This study aimed to evaluate the glymphatic system in childhood absence epilepsy (CAE) using diffusion tensor image analysis along the paravascular space (DTI-ALPS) index. Methods: Forty-two CAE patients and 50 age- and gender-matched healthy controls (HC) were included in this study. All participants underwent scanning using a Siemens 3.0 T magnetic resonance scanner, and the DTI-ALPS index was calculated. The study compared the differences of DTI-ALPS index between CAE patients and the healthy controls. Additionally, this study also assessed the relationship between the DTI-ALPS index and clinical characteristics such as age, seizure frequency, and duration of epilepsy. Results: The DTI-ALPS index was lower in CAE patients compared to the healthy controls (1.45 ± 0.36 vs. 1.66 ± 0.30, p < 0.01). The DTI-ALPS index showed a negative correlation with the duration of epilepsy (r = -0.48, p < 0.01) and a positive correlation with age (r = 0.766, p < 0.01) in CAE patients. However, no significant correlation was observed between the DTI-ALPS index and seizure frequency. Conclusion: The results of this study indicate that children with CAE exhibit dysfunction in the glymphatic system of the brain, which might contribute to understanding the pathophysiological mechanism of CAE. The DTI-ALPS, as a non-invasive diagnostic marker, can be used to assess the function of the glymphatic system in CAE patients, providing promising applications in the diagnosis and research of CAE.

2.
Stem Cell Res Ther ; 14(1): 159, 2023 06 07.
Article En | MEDLINE | ID: mdl-37287079

BACKGROUND: Mesenchymal stem cell (MSC) therapy is an attractive treatment option for various cancers. Whether MSCs can be used to treat well-differentiated endometrial cancer (EC) remains unclear. The aim of this study is to explore the potential therapeutic effects of MSCs on EC and the underlying mechanisms. METHODS: The effects of adipose-derived MSCs (AD-MSCs), umbilical-cord-derived MSCs (UC-MSCs), and endometrium-derived MSCs (eMSCs) on the malignant behaviors of EC cells were explored via in vitro and in vivo experiments. Three EC models, including patient-derived EC organoid lines, EC cell lines, and EC xenograft model in female BALB/C nude mice, were used for this study. The effects of MSCs on EC cell proliferation, apoptosis, migration, and the growth of xenograft tumors were evaluated. The potential mechanisms by which eMSCs inhibit EC cell proliferation and stemness were explored by regulating DKK1 expression in eMSCs or Wnt signaling in EC cells. RESULTS: Our results showed that eMSCs had the highest inhibitory effect on EC cell viability, and EC xenograft tumor growth in mice compared to AD-MSCs and UC-MSCs. Conditioned medium (CM) obtained from eMSCs significantly suppressed the sphere-forming ability and stemness-related gene expression of EC cells. In comparison to AD-MSCs and UC-MSCs, eMSCs had the highest level of Dickkopf-related protein 1 (DKK1) secretion. Mechanistically, eMSCs inhibited Wnt/ß-catenin signaling in EC cells via secretion of DKK1, and eMSCs suppressed EC cell viability and stemness through DKK1-Wnt/ß-catenin signaling. Additionally, the combination of eMSCs and medroxyprogesterone acetate (MPA) significantly inhibited the viability of EC organoids and EC cells compared with eMSCs or MPA alone. CONCLUSIONS: The eMSCs, but not AD-MSCs or UC-MSCs, could suppress the malignant behaviors of EC both in vivo and in vitro via inhibiting the Wnt/ß-catenin signaling pathway by secreting DKK1. The combination of eMSCs and MPA effectively inhibited EC growth, indicating that eMSCs may potentially be a new therapeutic strategy for young EC patients desiring for fertility preservation.


Endometrial Neoplasms , Mesenchymal Stem Cells , Humans , Mice , Female , Animals , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism , Mice, Nude , Mice, Inbred BALB C , Endometrial Neoplasms/therapy , Endometrial Neoplasms/metabolism , Endometrium/metabolism , Mesenchymal Stem Cells/metabolism , Cell Proliferation , Intercellular Signaling Peptides and Proteins/metabolism
3.
ACS Infect Dis ; 9(7): 1396-1407, 2023 07 14.
Article En | MEDLINE | ID: mdl-37311068

The development of safe and potent insecticides remains an integral part of a multifaceted strategy to effectively control human-disease-transmitting insect vectors. Incorporating fluorine can dramatically alter the physiochemical properties and bioavailability of insecticides. For example, 1,1,1-trichloro-2,2-bis(4-fluorophenyl)ethane (DFDT)─a difluoro congener of trichloro-2,2-bis(4-chlorophenyl)ethane (DDT)─was demonstrated previously to be 10-fold less toxic to mosquitoes than DDT in terms of LD50 values, but it exhibited a 4-fold faster knockdown. Described herein is the discovery of fluorine-containing 1-aryl-2,2,2-trichloro-ethan-1-ols (FTEs, for fluorophenyl-trichloromethyl-ethanols). FTEs, particularly per-fluorophenyl-trichloromethyl-ethanol (PFTE), exhibited rapid knockdown not only against Drosophila melanogaster but also against susceptible and resistant Aedes aegypti mosquitoes, major vectors of Dengue, Zika, yellow fever, and Chikungunya viruses. The R enantiomer of any chiral FTE, synthesized enantioselectively, exhibited faster knockdown than its corresponding S enantiomer. PFTE does not prolong the opening of mosquito sodium channels that are characteristic of the action of DDT and pyrethroid insecticides. In addition, pyrethroid/DDT-resistant Ae. aegypti strains having enhanced P450-mediated detoxification and/or carrying sodium channel mutations that confer knockdown resistance were not cross-resistant to PFTE. These results indicate a mechanism of PFTE insecticidal action distinct from that of pyrethroids or DDT. Furthermore, PFTE elicited spatial repellency at concentrations as low as 10 ppm in a hand-in-cage assay. PFTE and MFTE were found to possess low mammalian toxicity. These results suggest the substantial potential of FTEs as a new class of compounds for controlling insect vectors, including pyrethroid/DDT-resistant mosquitoes. Further investigations of FTE insecticidal and repellency mechanisms could provide important insights into how incorporation of fluorine influences the rapid lethality and mosquito sensing.


Aedes , Fluorine Compounds , Insecticides , Pyrethrins , Zika Virus Infection , Zika Virus , Animals , Humans , Insecticides/pharmacology , Fluorine/pharmacology , DDT/pharmacology , Fluorine Compounds/pharmacology , Drosophila melanogaster , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Mammals
4.
Front Neurol ; 14: 1135305, 2023.
Article En | MEDLINE | ID: mdl-37251238

Introduction: Childhood absence epilepsy (CAE) is a well-known pediatric epilepsy syndrome. Recent evidence has shown the presence of a disrupted structural brain network in CAE. However, little is known about the rich-club topology. This study aimed to explore the rich-club alterations in CAE and their association with clinical characteristics. Methods: Diffusion tensor imaging (DTI) datasets were acquired in a sample of 30 CAE patients and 31 healthy controls. A structural network was derived from DTI data for each participant using probabilistic tractography. Then, the rich-club organization was examined, and the network connections were divided into rich-club connections, feeder connections, and local connections. Results: Our results confirmed a less dense whole-brain structural network in CAE with lower network strength and global efficiency. In addition, the optimal organization of small-worldness was also damaged. A small number of highly connected and central brain regions were identified to form the rich-club organization in both patients and controls. However, patients exhibited a significantly reduced rich-club connectivity, while the other class of feeder and local connections was relatively spared. Moreover, the lower levels of rich-club connectivity strength were statistically correlated with disease duration. Discussion: Our reports suggest that CAE is characterized by abnormal connectivity concentrated to rich-club organizations and might contribute to understanding the pathophysiological mechanism of CAE.

5.
Nat Commun ; 13(1): 6300, 2022 10 22.
Article En | MEDLINE | ID: mdl-36273006

Endometrial cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states. Current models do not adequately reflect oncogenic origin and pathological progression in patients. Here we use single-cell RNA sequencing to profile cells from normal endometrium, atypical endometrial hyperplasia, and endometrioid endometrial cancer (EEC), which altogether represent the step-by-step development of endometrial cancer. We find that EEC originates from endometrial epithelial cells but not stromal cells, and unciliated glandular epithelium is the source of EEC. We also identify LCN2 + /SAA1/2 + cells as a featured subpopulation of endometrial tumorigenesis. Finally, the stromal niche and immune environment changes during EEC progression are described. This study elucidates the evolution of cell populations in EEC development at single-cell resolution, which would provide a direction to facilitate EEC research and diagnosis.


Carcinoma, Endometrioid , Endometrial Hyperplasia , Endometrial Neoplasms , Female , Humans , Transcriptome , Ecosystem , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Hyperplasia/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
6.
J Biol Chem ; 298(10): 102490, 2022 10.
Article En | MEDLINE | ID: mdl-36115458

Branching morphogenesis is a key process essential for lung and other organ development in which cellular and tissue architecture branch out to maximize surface area. While this process is known to be regulated by differential gene expression of ligands and receptors, how chromatin remodeling regulates this process remains unclear. Znhit1 (zinc finger HIT-type containing 1), acting as a chromatin remodeler, has previously been shown to control the deposition of the histone variant H2A.Z. Here, we demonstrate that Znhit1 also plays an important role in regulating lung branching. Using Znhit1 conditional KO mice, we show that Znhit1 deficiency in the embryonic lung epithelium leads to failure of branching morphogenesis and neonatal lethality, which is accompanied by reduced cell proliferation and increased cell apoptosis of the epithelium. The results from the transcriptome and the chromatin immunoprecipitation assay reveal that this is partially regulated by the derepression of Bmp4, encoding bone morphogenetic protein (BMP) 4, which is a direct target of H2A.Z. Furthermore, we show that inhibition of BMP signaling by the protein inhibitor Noggin rescues the lung branching defects of Znhit1 mutants ex vivo. Taken together, our study identifies the critical role of Znhit1/H2A.Z in embryonic lung morphogenesis via the regulation of BMP signaling.


Carrier Proteins , Chromatin , Lung , Animals , Mice , Bone Morphogenetic Protein 4/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromatin/metabolism , Gene Expression Regulation, Developmental , Histones/metabolism , Lung/metabolism , Morphogenesis/genetics , Signal Transduction/genetics
7.
Dev Cell ; 57(7): 901-913.e4, 2022 04 11.
Article En | MEDLINE | ID: mdl-35413238

The switch from mitosis to meiosis ensures the successive formation of gametes. However, it remains unclear how meiotic initiation occurs within the context of chromatin. Recent studies have shown that zinc finger HIT-type containing 1 (Znhit1), a subunit of the SRCAP chromatin remodeling complex, plays essential roles in modulating the chromatin structure. Herein, we report that the germline-conditional deletion of Znhit1 in male mice specifically blocks meiotic initiation. We show that Znhit1 is required for meiotic prophase events, including synapsis, DNA double-strand break formation, and meiotic DNA replication. Mechanistically, Znhit1 controls the histone variant H2A.Z deposition, which facilitates the expression of meiotic genes, such as Meiosin, but not the expression of Stra8. Interestingly, Znhit1 deficiency disrupts the transcription bubbles of meiotic genes. Thus, our findings identify the essential role of Znhit1-dependent H2A.Z deposition in allowing activation of meiotic gene expression, thereby controlling the initiation of meiosis.


Adaptor Proteins, Signal Transducing , Carrier Proteins , Germ Cells , Meiosis , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromatin , Gene Expression , Germ Cells/metabolism , Histones/metabolism , Male , Meiosis/genetics , Mice
9.
J Am Chem Soc ; 143(41): 17144-17152, 2021 10 20.
Article En | MEDLINE | ID: mdl-34634905

Imidacloprid, the world's leading insecticide, has been approved recently for controlling infectious disease vectors; yet, in agricultural settings, it has been implicated in the frightening decline of pollinators. This argues for strategies that sharply reduce the environmental impact of imidacloprid. When used as a contact insecticide, the effectiveness of imidacloprid relies on physical contact between its crystal surfaces and insect tarsi. Herein, seven new imidacloprid crystal polymorphs are reported, adding to two known forms. Anticipating that insect uptake of imidacloprid molecules would depend on the respective free energies of crystal polymorph surfaces, measurements of insect knockdown times for the metastable crystal forms were as much as nine times faster acting than the commercial form against Aedes, Anopheles, and Culex mosquitoes as well as Drosophila (fruit flies). These results suggest that replacement of commercially available imidacloprid crystals (a.k.a. Form I) in space-spraying with any one of three new polymorphs, Forms IV, VI, IX, would suppress vector-borne disease transmission while reducing environmental exposure and harm to nontarget organisms.


Neonicotinoids , Nitro Compounds
10.
J Am Chem Soc ; 141(42): 16858-16864, 2019 10 23.
Article En | MEDLINE | ID: mdl-31601104

Malaria control is under threat by the development of vector resistance to pyrethroids in long-lasting insecticidal nets, which has prompted calls for a return to the notorious crystalline contact insecticide DDT. A faster acting difluoro congener, DFDT, was developed in Germany during World War II, but in 1945 Allied inspectors dismissed its superior performance and reduced toxicity to mammals. It vanished from public health considerations. Herein, we report the discovery of amorphous and crystalline forms of DFDT and a mono-fluorinated chiral congener, MFDT. These solid forms were evaluated against Drosophila as well as Anopheles and Aedes mosquitoes, the former identified as disease vectors for malaria and the latter for Zika, yellow fever, dengue, and chikungunya. Contact insecticides are transmitted to the insect when its feet contact the solid surface of the insecticide, resulting in absorption of the active agent. Crystalline DFDT and MFDT were much faster killers than DDT, and their amorphous forms were even faster. The speed of action (a.k.a. knockdown time), which is critical to mitigating vector resistance, depends inversely on the thermodynamic stability of the solid form. Furthermore, one enantiomer of the chiral MFDT exhibits faster knockdown speeds than the other, demonstrating chiral discrimination during the uptake of the insecticide or when binding at the sodium channel, the presumed destination of the neurotoxin. These observations demonstrate an unambiguous link between thermodynamic stability and knockdown time for important disease vectors, suggesting that manipulation of the solid-state chemistry of contact insecticides, demonstrated here for DFDT and MFDT, is a viable strategy for mitigating insect-borne diseases, with an accompanying benefit of reducing environmental impact.


Communicable Disease Control/methods , DDT/chemistry , DDT/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Models, Molecular , Molecular Conformation
...