Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421259

RESUMEN

The sharpening switch is one of the most important elements in the trigger generator, which is used to sharpen the front of the trigger pulse. The breakdown performance of the sharpening switch has an important influence on the output and stability of the trigger generator. In this paper, a novel 200 kV capacitance-coupling pre-ionized sharpening switch, which can realize pre-ionization by dividing voltage through its own structural capacitances, is proposed and investigated. In order to obtain the optimal parameters of the pre-ionized sharpening switch, the influences of the electrode structure, electrode material, main gap distance, and pre-ionized gap distance on the breakdown performance are studied experimentally. The experimental results show that the electrode structure with a circular knife-edged cathode and a plate-shaped anode has the smallest breakdown jitter, followed by the needle-plate structure and the tapered ball-head structure. The stainless steel electrode has the smallest jitter, followed by graphite, aluminum, and brass electrodes. When the gap distances of the main gap and the pre-ionized gap are 13 and 1.5 mm, respectively, the breakdown stability of the pre-ionized sharpening switch is the best. Under an input voltage pulse with a rise time of about one microsecond, the jitter of the capacitance-coupling pre-ionized sharpening switch with the optimal parameters is 6.08 ns, which is about 0.6% of the rise time of the input pulse. The jitter decreases by 44.5% compared to the switch without pre-ionization. The rise time of the output pulse is sharpened to 17 ns, corresponding to a voltage rise rate of more than 11 kV/ns.

2.
Rev Sci Instrum ; 94(3): 033301, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012737

RESUMEN

Schottky diagnostics is an important measure for the debunched beam during the injection phase of the Xi'an Proton Application Facility (XiPAF). The existing capacitive Schottky pickup has a relatively low sensitivity and a poor signal-to-noise ratio for the low-intensity beam. A resonant Schottky pickup based on the principle of a reentrant cavity is proposed. The effects of cavity geometric parameters on cavity properties are systematically studied. A prototype was built and tested to validate the simulation results. The prototype has a resonance frequency of 24.23 MHz, a Q value of 635, and a shunt impedance of 19.75 kΩ. The resonant Schottky pickup has the capability to detect as few as 2.3 × 106 protons with an energy of 7 MeV and a momentum spread of about 1% at the injection phase of XiPAF. The sensitivity is two orders of magnitude higher than the existing capacitive pickup.

3.
Rev Sci Instrum ; 93(10): 103302, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319370

RESUMEN

A cylindrical reflex triode was designed and directly driven by a four-stage linear transformer driver to generate high intensity pulsed warm x rays. We developed a numerical model of the cylindrical reflex triode and simulated and studied the experimental electron distribution and the radiation characteristics. The working voltage of the cylindrical reflex triode is 220 kV, and the current is about 600 kA. Under the voltage pulse with a rise time of 100 ns, the electron beam spot is uniform, and the duration of the gap without short circuit reaches 200 ns. The x-ray dose is 385 rad (Si), with an irradiation area of 615 cm2 and a uniformity of less than 2:1. The radiation field distribution is basically consistent with the simulation results. Compared with the two-stage series diode on the Flash-II accelerator, the x-ray conversion efficiency of the cylindrical reflex triode is increased about 1.6 times.

4.
Rev Sci Instrum ; 88(1): 013506, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147662

RESUMEN

This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA