Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Phys Sci ; 2(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34888535

RESUMEN

SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.

2.
Elife ; 102021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34730514

RESUMEN

The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it toward the plasma membrane to activate Orai and SOCE after store depletion.


Asunto(s)
Señalización del Calcio , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(16): 7899-7904, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30923112

RESUMEN

We present a simple nanopore-electroporation (NanoEP) platform for delivery of nucleic acids, functional protein, and Cas9 single-guide RNA ribonucleoproteins into both adherent and suspension cells with up to 80% delivery efficiency and >95% cell viability. Low-voltage electric pulses permeabilize a small area of cell membrane as a cell comes into close contact with the nanopores. The biomolecule cargo is then electrophoretically drawn into the cells through the nanopores. In addition to high-performance delivery with low cell toxicity, the NanoEP system does not require specialized buffers, expensive materials, complicated fabrication processes, or cell manipulation; it simply consists of a generic nanopore-embedded water-filter membrane and a low-voltage square-wave generator. Ultimately, the NanoEP platform offers an effective and flexible method for universal intracellular delivery.


Asunto(s)
Técnicas Citológicas/métodos , Electroporación/métodos , Edición Génica/métodos , Nanoporos , Transfección/métodos , Supervivencia Celular , Electroporación/instrumentación , Diseño de Equipo , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Curr Opin Cell Biol ; 57: 90-98, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30716649

RESUMEN

Store-operated calcium entry (SOCE) through Orai channels is triggered by receptor-stimulated depletion of Ca2+ from the ER. Orai1 is unique in terms of its activation mechanism, biophysical properties, and structure, and its precise regulation is essential for human health. Recent studies have begun to reveal the structural basis of the major steps in the SOCE pathway and how the system is reliably suppressed in resting cells but able to respond robustly to ER Ca2+ depletion. In this review, we discuss current models describing the activation of ER Ca2+ sensor STIM1, its binding to Orai1, propagation of the binding signal from the channel periphery to the central pore, and the resulting conformational changes underlying opening of the highly Ca2+ selective Orai1 channel.


Asunto(s)
Calcio/metabolismo , Proteína ORAI1/química , Molécula de Interacción Estromal 1/química , Animales , Señalización del Calcio , Humanos , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
8.
Nat Methods ; 15(9): 669-676, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171252

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Laboratorios/normas , Reproducibilidad de los Resultados
9.
Proc Natl Acad Sci U S A ; 112(35): 10914-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283381

RESUMEN

DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (ß-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL's endonuclease activity by ß-clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS-MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine that Thermus aquaticus MutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with ß-clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.


Asunto(s)
Proteínas Bacterianas/genética , Disparidad de Par Base , Thermus/genética , Genes Bacterianos
10.
Biochemistry ; 53(12): 2043-52, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24588663

RESUMEN

MutS recognizes base-base mismatches and base insertions/deletions (IDLs) in newly replicated DNA. Specific interactions between MutS and these errors trigger a cascade of protein-protein interactions that ultimately lead to their repair. The inability to explain why different DNA errors are repaired with widely varying efficiencies in vivo remains an outstanding example of our limited knowledge of this process. Here, we present single-molecule Förster resonance energy transfer measurements of the DNA bending dynamics induced by Thermus aquaticus MutS and the E41A mutant of MutS, which is known to have error specific deficiencies in signaling repair. We compared three DNA mismatches/IDLs (T-bulge, GT, and CC) with repair efficiencies ranging from high to low. We identify three dominant DNA bending states [slightly bent/unbent (U), intermediately bent (I), and significantly bent (B)] and find that the kinetics of interconverting among states varies widely for different complexes. The increased stability of MutS-mismatch/IDL complexes is associated with stabilization of U and lowering of the B to U transition barrier. Destabilization of U is always accompanied by a destabilization of B, supporting the suggestion that B is a "required" precursor to U. Comparison of MutS and MutS-E41A dynamics on GT and the T-bulge suggests that hydrogen bonding to MutS facilitates the changes in base-base hydrogen bonding that are required to achieve the U state, which has been implicated in repair signaling. Taken together with repair propensities, our data suggest that the bending kinetics of MutS-mismatched DNA complexes may control the entry into functional pathways for downstream signaling of repair.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Reparación del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Fenotipo , Transferencia Resonante de Energía de Fluorescencia , Mutación INDEL , Valor Predictivo de las Pruebas , Transducción de Señal/genética , Thermus/enzimología , Thermus/genética
11.
Biochemistry ; 53(10): 1670-9, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559171

RESUMEN

Prostate-associated gene 4 (PAGE4) is a cancer/testis antigen that is typically restricted to the testicular germ cells but is aberrantly expressed in cancer. Furthermore, PAGE4 is developmentally regulated with dynamic expression patterns in the developing prostate and is also a stress-response protein that is upregulated in response to cellular stress. PAGE4 interacts with c-Jun, which is activated by the stress-response kinase JNK1, and plays an important role in the development and pathology of the prostate gland. Here, we have identified homeodomain-interacting protein kinase 1 (HIPK1), also a component of the stress-response pathway, as a kinase that phosphorylates PAGE4 at T51. We show that phosphorylation of PAGE4 is critical for its transcriptional activity since mutating this T residue abolishes its ability to potentiate c-Jun transactivation. In vitro single molecule FRET indicates phosphorylation results in compaction of (still) intrinsically disordered PAGE4. Interestingly, however, while our previous observations indicated that the wild-type nonphosphorylated PAGE4 protein interacted with c-Jun [Rajagopalan , K. et al. ( 2014 ) Biochim, Biophys. Acta 1842 , 154 -163], here we show that phosphorylation of PAGE4 weakens its interaction with c-Jun in vitro. These data suggest that phosphorylation induces conformational changes in natively disordered PAGE4 resulting in its decreased affinity for c-Jun to promote interaction of c-Jun with another, unidentified, partner. Alternatively, phosphorylated PAGE4 may induce transcription of a novel partner, which then potentiates c-Jun transactivation. Regardless, the present results clearly implicate PAGE4 as a component of the stress-response pathway and uncover a novel link between components of this pathway and prostatic development and disease.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Activación Transcripcional , Secuencias de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Humanos , Masculino , Fosforilación , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/fisiopatología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Estrés Fisiológico , Testículo/metabolismo
12.
Biochim Biophys Acta ; 1842(2): 154-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24263171

RESUMEN

The Cancer/Testis Antigen (CTA), Prostate-associated Gene 4 (PAGE4), is a stress-response protein that is upregulated in prostate cancer (PCa) especially in precursor lesions that result from inflammatory stress. In cells under stress, translocation of PAGE4 to mitochondria increases while production of reactive oxygen species decreases. Furthermore, PAGE4 is also upregulated in human fetal prostate, underscoring its potential role in development. However, the proteins that interact with PAGE4 and the mechanisms underlying its pleiotropic functions in prostatic development and disease remain unknown. Here, we identified c-Jun as a PAGE4 interacting partner. We show that both PAGE4 and c-Jun are overexpressed in the human fetal prostate; and in cell-based assays, PAGE4 robustly potentiates c-Jun transactivation. Single-molecule Förster resonance energy transfer experiments indicate that upon binding to c-Jun, PAGE4 undergoes conformational changes. However, no interaction is observed in presence of BSA or unilamellar vesicles containing the mitochondrial inner membrane diphosphatidylglycerol lipid marker cardiolipin. Together, our data indicate that PAGE4 specifically interacts with c-Jun and that, conformational dynamics may account for its observed pleiotropic functions. To our knowledge, this is the first report demonstrating crosstalk between a CTA and a proto-oncogene. Disrupting PAGE4/c-Jun interactions using small molecules may represent a novel therapeutic strategy for PCa.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Próstata/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Activación Transcripcional , Regiones no Traducidas 3'/genética , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Próstata/embriología , Próstata/crecimiento & desarrollo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Conformación Proteica , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-jun/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
13.
EMBO J ; 31(11): 2528-40, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22505031

RESUMEN

MutS protein recognizes mispaired bases in DNA and targets them for mismatch repair. Little is known about the transient conformations of MutS as it signals initiation of repair. We have used single-molecule fluorescence resonance energy transfer (FRET) measurements to report the conformational dynamics of MutS during this process. We find that the DNA-binding domains of MutS dynamically interconvert among multiple conformations when the protein is free and while it scans homoduplex DNA. Mismatch recognition restricts MutS conformation to a single state. Steady-state measurements in the presence of nucleotides suggest that both ATP and ADP must be bound to MutS during its conversion to a sliding clamp form that signals repair. The transition from mismatch recognition to the sliding clamp occurs via two sequential conformational changes. These intermediate conformations of the MutS:DNA complex persist for seconds, providing ample opportunity for interaction with downstream proteins required for repair.


Asunto(s)
Reparación de la Incompatibilidad de ADN/fisiología , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Adenosina Difosfato/química , Adenosina Trifosfato/química , Reparación de la Incompatibilidad de ADN/genética , Transferencia Resonante de Energía de Fluorescencia , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...