Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 131
1.
J Infect Dis ; 228(Suppl 7): S691-S700, 2023 11 13.
Article En | MEDLINE | ID: mdl-37288609

Filoviruses, including ebolaviruses and marburgviruses, can cause severe and often fatal disease in humans. Over the past several years, antibody therapy has emerged as a promising strategy for the treatment of filovirus disease. Here, we describe 2 distinct cross-reactive monoclonal antibodies (mAbs) isolated from mice immunized with recombinant vesicular stomatitis virus-based filovirus vaccines. Both mAbs recognized the glycoproteins of multiple different ebolaviruses and exhibited broad but differential in vitro neutralization activities against these viruses. By themselves, each mAb provided partial to full protection against Ebola virus in mice, and in combination, the mAbs provided 100% protection against Sudan virus challenge in guinea pigs. This study identified novel mAbs that were elicited through immunization and able to provide protection from ebolavirus infection, thus enriching the pool of candidate therapeutics for treating Ebola disease.


Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea Pigs , Mice , Antibodies, Monoclonal , Combined Antibody Therapeutics , Antibodies, Neutralizing , Antibodies, Viral
2.
Microbiol Spectr ; : e0415422, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36946725

Ebola virus (EBOV) causes a severe infection called Ebola virus disease (EVD). The pathogenesis of EBOV infection is complex, and outcome has been associated with a variety of immunological and cellular factors. Disease can result from several mechanisms, including direct organ and endothelial cell damage as a result of viral replication. During the2013 to 2016 Western Africa EBOV outbreak, several mutants emerged, with changes in the genes of nucleoprotein (NP), glycoprotein (GP), and the large (L) protein. Reverse genetic analysis has been used to investigate whether these mutations played any role in pathogenesis with mixed results depending on the experimental system used. Previous studies investigated the impact of three single nonsynonymous mutations (GP-A82V, NP-R111C, and L-D759G) on the fatality rate of mouse and ferret models and suggested that the L-D759G mutation decreased the virulence of EBOV. In this study, the effect of these three mutations was further evaluated by deep sequencing to determine viral population genetics and the host response in longitudinal samples of blood, liver, kidney, spleen, and lung tissues taken from the previous ferret model. The data indicated that the mutations were maintained in the different tissues, but the frequency of minor genomic mutations were different. In addition, compared to wild-type virus, the recombinant mutants had different within host effects, where the D759G (and accompanying Q986H) substitution in the L protein resulted in an upregulation of the immune response in the kidney, liver, spleen, and lungs. Together these studies provide insights into the biology of EBOV mutants both between and within hosts. IMPORTANCE Ebola virus infection can have dramatic effects on the human body which manifest in Ebola virus disease. The outcome of infection is either survival or death and in the former group with the potential of longer-term health consequences and persistent infection. Disease severity is undoubtedly associated with the host response, often with overt inflammatory responses correlated with poorer outcomes. The scale of the2013 to 2016 Western African Ebola virus outbreak revealed new aspects of viral biology. This included the emergence of mutants with potentially altered virulence. Biobanked tissue from ferret models of EBOV infected with different mutants that emerged in the Western Africa outbreak was used to investigate the effect of EBOV genomic variation in different tissues. Overall, the work provided insights into the population genetics of EBOV and showed that different organs in an animal model can respond differently to variants of EBOV.

3.
Gene Ther ; 2022 Sep 01.
Article En | MEDLINE | ID: mdl-36050451

Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 µg/mL and 195 µg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative "vaccine" strategy for those with compromised immune systems or in possible outbreak response scenarios.

4.
Mol Ther Methods Clin Dev ; 26: 505-518, 2022 Sep 08.
Article En | MEDLINE | ID: mdl-36092367

Filoviruses cause severe hemorrhagic fever with case fatality rates as high as 90%. Filovirus-specific monoclonal antibodies (mAbs) confer protection in nonhuman primates as late as 5 days after challenge, and FDA-approved mAbs REGN-EB3 and mAb114 have demonstrated efficacy against Ebola virus (EBOV) infection in humans. Vectorized antibody expression mediated by adeno-associated virus (AAV) can generate protective and sustained concentrations of therapeutic mAbs in animal models for a variety of infectious diseases, including EBOV. Here we demonstrate that AAV6.2FF-mediated expression of murine IgG2a EBOV mAbs, 2G4 and 5D2, protects from mouse-adapted (MA)-EBOV infection with none of the surviving mice developing anti-VP40 antibodies above background. Protective serum concentrations of AAV6.2FF-2G4/AAV6.2FF-5D2 did not alter endogenous antibody responses to heterologous virus infection. AAV-mediated expression of EBOV mAbs 100 and 114, and pan-ebolavirus mAbs, FVM04, ADI-15878, and CA45, as human IgG1 antibodies conferred protection against MA-EBOV at low serum concentrations, with minimum protective serum levels as low as 2 µg/mL. Vectorized expression of murine IgG2a or human IgG1 mAbs led to sustained expression in the serum of mice for >400 days or for the lifetime of the animal, respectively. AAV6.2FF-mediated mAb expression offers an alternative to recombinant antibody administration in scenarios where long-term protection is preferable to passive immunization.

5.
ILAR J ; 61(1): 62-71, 2022 01 07.
Article En | MEDLINE | ID: mdl-33951727

The domestic ferret (Mustela putorius furo) has long been a popular animal model for evaluating viral pathogenesis and transmission as well as the efficacy of candidate countermeasures. Without question, the ferret has been most widely implemented for modeling respiratory viruses, particularly influenza viruses; however, in recent years, it has gained attention as a novel animal model for characterizing filovirus infections. Although ferrets appear resistant to infection and disease caused by Marburg and Ravn viruses, they are highly susceptible to lethal disease caused by Ebola, Sudan, Bundibugyo, and Reston viruses. Notably, unlike the immunocompetent rodent models of filovirus infection, ferrets are susceptible to lethal disease caused by wild-type viruses, and they recapitulate many aspects of human filovirus disease, including systemic virus replication, coagulation abnormalities, and a dysregulated immune response. Along with the stringency with which they reproduce Ebola disease, their relatively small size and availability make ferrets an attractive choice for countermeasure evaluation and pathogenesis modeling. Indeed, they are so far the only small animal model available for Bundibugyo virus. Nevertheless, ferrets do have their limitations, including the lack of commercially available reagents to dissect host responses and their unproven predictive value in therapeutic evaluation. Although the use of the ferret model in ebolavirus research has been consistent over the last few years, its widespread use and utility remains to be fully proven. This review provides a comprehensive overview of the ferret models of filovirus infection and perspective on their ongoing use in pathogenesis modeling and countermeasure evaluation.


Ebolavirus , Filoviridae Infections , Hemorrhagic Fever, Ebola , Animals , Disease Models, Animal , Ferrets , Filoviridae Infections/pathology
6.
J Infect Dis ; 226(4): 616-624, 2022 09 04.
Article En | MEDLINE | ID: mdl-34626109

Many characteristics associated with Ebola virus disease remain to be fully understood. It is known that direct contact with infected bodily fluids is an associated risk factor, but few studies have investigated parameters associated with transmission between individuals, such as the dose of virus required to facilitate spread and route of infection. Therefore, we sought to characterize the impact by route of infection, viremia, and viral shedding through various mucosae, with regards to intraspecies transmission of Ebola virus in a nonhuman primate model. Here, challenge via the esophagus or aerosol to the face did not result in clinical disease, although seroconversion of both challenged and contact animals was observed in the latter. Subsequent intramuscular or intratracheal challenges suggest that viral loads determine transmission likelihood to naive animals in an intramuscular-challenge model, which is greatly facilitated in an intratracheal-challenge model where transmission from challenged to direct contact animal was observed consistently.


Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Macaca mulatta , Viral Load , Viremia
7.
J Infect Dis ; 225(10): 1852-1855, 2022 05 16.
Article En | MEDLINE | ID: mdl-34791300

Numerous studies have demonstrated the importance of the adaptive immunity for survival following Ebola virus (EBOV) infection. To evaluate the contribution of tissue damage to EBOV-induced immune suppression, acute liver damage or hemolysis, 2 symptoms associated with lethal EBOV infection, were chemically induced in vaccinated mice. Results show that either liver damage or hemolysis was sufficient to inhibit the host humoral response against EBOV glycoprotein and to drastically reduce the level of circulating T cells. This study thus provides a possible mechanism for the limited specific antibody production and lymphopenia in individuals with lethal hemorrhagic fever infections.


Antibody Formation , Hemorrhagic Fever, Ebola , Lymphopenia , Animals , Antibodies, Viral , Ebolavirus , Glycoproteins , Hemolysis , Hemorrhagic Fever, Ebola/immunology , Liver/pathology , Liver/virology , Lymphopenia/virology , Mice
8.
Hepatology ; 76(2): 330-344, 2022 08.
Article En | MEDLINE | ID: mdl-34897774

BACKGROUND AND AIMS: Chimeric antigen receptor engineered T cells (CARTs) for HCC and other solid tumors are not as effective as they are for blood cancers. CARTs may lose function inside tumors due to persistent antigen engagement. The aims of this study are to develop low-affinity monoclonal antibodies (mAbs) and low-avidity CARTs for HCC and to test the hypothesis that low-avidity CARTs can resist exhaustion and maintain functions in solid tumors, generating durable antitumor effects. METHODS AND RESULTS: New human glypican-3 (hGPC3) mAbs were developed from immunized mice. We obtained three hGPC3-specific mAbs that stained HCC tumors, but not the adjacent normal liver tissues. One of them, 8F8, bound an epitope close to that of GC33, the frequently used high-affinity mAb, but with approximately 17-fold lower affinity. We then compared the 8F8 CARTs to GC33 CARTs for their in vitro function and in vivo antitumor effects. In vitro, low-avidity 8F8 CARTs killed both hGPC3high and hGPC3low HCC tumor cells to the same extent as high-avidity GC33 CARTs. 8F8 CARTs expanded and persisted to a greater extent than GC33 CARTs, resulting in durable responses against HCC xenografts. Importantly, compared with GC33 CARTs, there were 5-fold more of 8F8-BBz CARTs in the tumor mass for a longer period of time. Remarkably, the tumor-infiltrating 8F8 CARTs were less exhausted and apoptotic, and more functional than GC33 CARTs. CONCLUSION: The low-avidity 8F8-BBz CART resists exhaustion and apoptosis inside tumor lesions, demonstrating a greater therapeutic potential than high-avidity CARTs.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Glypicans , Humans , Liver Neoplasms/pathology , Mice , Xenograft Model Antitumor Assays
9.
Microorganisms ; 9(3)2021 Feb 26.
Article En | MEDLINE | ID: mdl-33652895

BACKGROUND: The 2014-2016 Ebola outbreak in West Africa recapitulated that nosocomial spread of Ebola virus could occur and that health care workers were at particular risk including notable cases in Europe and North America. These instances highlighted the need for centers to better prepare for potential Ebola virus cases; including understanding how the virus spreads and which interventions pose the greatest risk. METHODS: We created a fully equipped intensive care unit (ICU), within a Biosafety Level 4 (BSL4) laboratory, and infected multiple sedated non-human primates (NHPs) with Ebola virus. While providing bedside care, we sampled blood, urine, and gastric residuals; as well as buccal, ocular, nasal, rectal, and skin swabs, to assess the risks associated with routine care. We also assessed the physical environment at end-point. RESULTS: Although viral RNA was detectable in blood as early as three days post-infection, it was not detectable in the urine, gastric fluid, or swabs until late-stage disease. While droplet spread and fomite contamination were present on a few of the surfaces that were routinely touched while providing care in the ICU for the infected animal, these may have been abrogated through good routine hygiene practices. CONCLUSIONS: Overall this study has helped further our understanding of which procedures may pose the highest risk to healthcare providers and provides temporal evidence of this over the clinical course of disease.

10.
Nat Biotechnol ; 39(6): 747-753, 2021 06.
Article En | MEDLINE | ID: mdl-33623157

Computational approaches for drug discovery, such as quantitative structure-activity relationship, rely on structural similarities of small molecules to infer biological activity but are often limited to identifying new drug candidates in the chemical spaces close to known ligands. Here we report a biological activity-based modeling (BABM) approach, in which compound activity profiles established across multiple assays are used as signatures to predict compound activity in other assays or against a new target. This approach was validated by identifying candidate antivirals for Zika and Ebola viruses based on high-throughput screening data. BABM models were then applied to predict 311 compounds with potential activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of the predicted compounds, 32% had antiviral activity in a cell culture live virus assay, the most potent compounds showing a half-maximal inhibitory concentration in the nanomolar range. Most of the confirmed anti-SARS-CoV-2 compounds were found to be viral entry inhibitors and/or autophagy modulators. The confirmed compounds have the potential to be further developed into anti-SARS-CoV-2 therapies.


Antiviral Agents/pharmacology , COVID-19 Drug Treatment , High-Throughput Screening Assays/methods , SARS-CoV-2/drug effects , COVID-19/genetics , COVID-19/virology , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Humans , SARS-CoV-2/pathogenicity
11.
Microorganisms ; 9(2)2021 Jan 21.
Article En | MEDLINE | ID: mdl-33494199

Filoviruses are zoonotic, negative-sense RNA viruses, most of which are capable of causing severe disease in humans and nonhuman primates, often with high case fatality rates. Among these viruses, those belonging to the Ebolavirus genus-particularly Ebola virus, Sudan virus, and Bundibugyo virus-represent some of the most pathogenic to humans. Taï Forest virus (TAFV) is thought to be among the least pathogenic ebolaviruses; however, only a single non-fatal case has been documented in humans, in 1994. With the recent success of the ferret as a lethal model for a number of ebolaviruses, we set out to evaluate its suitability as a model for TAFV. Our results demonstrate that, unlike other ebolaviruses, TAFV infection in ferrets does not result in lethal disease. None of the intramuscularly inoculated animals demonstrated any overt signs of disease, whereas the intranasally inoculated animals exhibited mild to moderate weight loss during the early stage of infection but recovered quickly. Low levels of viral RNA were detected in the blood and tissues of several animals, particularly the intranasally inoculated animals, and all animals mounted a humoral immune response, with high titers of GP-specific IgG detectable as early as 14 days post-infection. These data provide additional insight into the pathogenesis of TAFV.

12.
mBio ; 12(1)2021 01 12.
Article En | MEDLINE | ID: mdl-33436428

Ebola virus (EBOV) is responsible for numerous devastating outbreaks throughout Africa, including the 2013-2016 West African outbreak as well as the two recent outbreaks in the Democratic Republic of the Congo (DRC), one of which is ongoing. Although EBOV disease (EVD) has typically been considered a highly lethal acute infection, increasing evidence suggests that the virus can persist in certain immune-privileged sites and occasionally lead to EVD recrudescence. Little is understood about the processes that contribute to EBOV persistence and recrudescence, in part because of the rarity of these phenomena but also because of the absence of an animal model that recapitulates them. Here, we describe a case of EBOV persistence associated with atypical EVD in a nonhuman primate (NHP) following inoculation with EBOV and treatment with an experimental monoclonal antibody cocktail. Although this animal exhibited only mild signs of acute EVD, it developed severe disease 2 weeks later and succumbed shortly thereafter. Viremia was undetectable at the time of death, despite abundant levels of viral RNA in most tissues, each of which appeared to harbor a distinct viral quasispecies. Remarkably, sequence analysis identified a single mutation in glycoprotein (GP) that not only resisted antibody-mediated neutralization but also increased viral growth kinetics and virulence. Overall, this report represents the most thoroughly characterized case of atypical EVD in an NHP described thus far, and it provides valuable insight into factors that may contribute to EBOV persistence and recrudescent disease.IMPORTANCE Ebola virus remains a global threat to public health and biosecurity, yet we still know relatively little about its pathogenesis and the complications that arise following recovery. With nearly 20,000 survivors from the 2013-2016 West African outbreak, as well as over 1,000 survivors of the recent outbreak in the DRC, we must consider the consequences of virus persistence and recrudescent disease, even if they are rare. In this study, we describe a case of atypical Ebola virus disease in a nonhuman primate after treatment with a monoclonal antibody. Not only does this study underscore the potential for atypical disease presentations, but it also emphasizes the importance of considering how medical countermeasures might relate to these phenomena, especially as antibodies are incorporated into the standard of care. The results presented herein provide a foundation from which we can continue to investigate these facets of Ebola virus disease.


Antibodies, Monoclonal/immunology , Ebolavirus/genetics , Glycoproteins/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Mutation , Africa , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral/immunology , Cytokines , Disease Outbreaks , Female , Ferrets , Hemorrhagic Fever, Ebola/drug therapy , Male , Primates , RNA, Viral/isolation & purification
13.
PLoS Negl Trop Dis ; 14(11): e0008817, 2020 11.
Article En | MEDLINE | ID: mdl-33141837

The 2013-2016 Ebola virus (EBOV) outbreak in West Africa and the ongoing cases in the Democratic Republic of the Congo have spurred development of a number of medical countermeasures, including rapid Ebola diagnostic tests. The likelihood of transmission increases as the disease progresses due to increasing viral load and potential for contact with others. Early diagnosis of EBOV is essential for halting spread of the disease. Polymerase chain reaction assays are the gold standard for diagnosing Ebola virus disease (EVD), however, they rely on infrastructure and trained personnel that are not available in most resource-limited settings. Rapid diagnostic tests that are capable of detecting virus with reliable sensitivity need to be made available for use in austere environments where laboratory testing is not feasible. The goal of this study was to produce candidate lateral flow immunoassay (LFI) prototypes specific to the EBOV glycoprotein and viral matrix protein, both targets known to be present during EVD. The LFI platform utilizes antibody-based technology to capture and detect targets and is well suited to the needs of EVD diagnosis as it can be performed at the point-of-care, requires no cold chain, provides results in less than twenty minutes and is low cost. Monoclonal antibodies were isolated, characterized and evaluated in the LFI platform. Top performing LFI prototypes were selected, further optimized and confirmed for sensitivity with cultured live EBOV and clinical samples from infected non-human primates. Comparison with a commercially available EBOV rapid diagnostic test that received emergency use approval demonstrates that the glycoprotein-specific LFI developed as a part of this study has improved sensitivity. The outcome of this work presents a diagnostic prototype with the potential to enable earlier diagnosis of EVD in clinical settings and provide healthcare workers with a vital tool for reducing the spread of disease during an outbreak.


Antigens, Viral/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/diagnosis , Immunoassay/methods , Viral Envelope Proteins/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Democratic Republic of the Congo/epidemiology , Diagnostic Tests, Routine , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Female , Hemorrhagic Fever, Ebola/epidemiology , Humans , Immunologic Tests , Mice , Point-of-Care Systems , Point-of-Care Testing , Polymerase Chain Reaction
14.
bioRxiv ; 2020 Jul 27.
Article En | MEDLINE | ID: mdl-32766591

The recent global pandemic caused by the new coronavirus SARS-CoV-2 presents an urgent need for new therapeutic candidates. While the importance of traditional in silico approaches such as QSAR in such efforts in unquestionable, these models fundamentally rely on structural similarity to infer biological activity and are thus prone to becoming trapped in the very nearby chemical spaces of already known ligands. For novel and unprecedented threats such as COVID-19 much faster and efficient paradigms must be devised to accelerate the identification of new chemical classes for rapid drug development. Here we report the development of a new biological activity-based modeling (BABM) approach that builds on the hypothesis that compounds with similar activity patterns tend to share similar targets or mechanisms of action. In BABM, compound activity profiles established on massive scale across multiple assays are used as signatures to predict compound activity in a new assay or against a new target. We first trained and validated this approach by identifying new antiviral lead candidates for Zika and Ebola based on data from ~0.5 million compounds screened against ~2,000 assays. BABM models were then applied to predict ~300 compounds not previously reported to have activity for SARS-CoV-2, which were then tested in a live virus assay with high (>30%) hit rates. The most potent compounds showed antiviral activities in the nanomolar range. These potent confirmed compounds have the potential to be further developed in novel chemical space into new anti-SARS-CoV-2 therapies. These results demonstrate unprecedented ability using BABM to predict novel structures as chemical leads significantly beyond traditional methods, and its application in rapid drug discovery response in a global public health crisis.

15.
MAbs ; 12(1): 1742457, 2020.
Article En | MEDLINE | ID: mdl-32213108

Ebola virus (EBOV) can cause severe hemorrhagic fever in humans, and no approved treatment is currently available. Although several antibodies have achieved good protection in animal models, the potential emerging isolates of ebolavirus and the unknown effects of experimental antibodies in humans underscore the need to develop additional antibodies to address the threat of Ebola. Here, we isolated a series of memory B cell-derived monoclonal antibodies from healthy Chinese adults vaccinated with Ad5-EBOV. These antibodies were encoded by diverse germline genes and had high levels of somatic hypermutation. Most antibodies were cross-reactive and could bind at least two ebolavirus glycoproteins (GPs). Seven neutralizing antibodies were identified using HIV-EBOV GP-Luc pseudovirus, and they effectively neutralized authentic EBOV. In particular, monoclonal antibody 2G1 exhibited potent cross-neutralization against HIV-EBOV/SUDV/BDBV GP-Luc bearing different ebolavirus GPs. We used truncated GPs, competition assays, and software prediction to analyze seven neutralizing antibodies, which bound four different epitopes on GP. Importantly, three of these antibodies provided complete protection in mice when administered one day post-infection. Our study expands the list of candidate antibodies and the options for successfully treating ebolavirus infection.


Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Ebola Vaccines/immunology , Ebolavirus/immunology , Animals , Female , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Male , Mice
17.
Viruses ; 11(11)2019 10 31.
Article En | MEDLINE | ID: mdl-31683550

Ebola virus (EBOV) is a highly lethal pathogen that has caused several outbreaks of severe hemorrhagic fever in humans since its emergence in 1976. The EBOV glycoprotein (GP1,2) is the sole viral envelope protein and a major component of immunogenicity; it is encoded by the GP gene along with two truncated versions: soluble GP (sGP) and small soluble GP (ssGP). sGP is, in fact, the primary product of the GP gene, and it is secreted in abundance during EBOV infection. Since sGP shares large portions of its sequence with GP1,2, it has been hypothesized that sGP may subvert the host immune response by inducing antibodies against sGP rather than GP1,2. Several reports have shown that sGP plays multiple roles that contribute to the complex pathogenesis of EBOV. In this review, we focus on sGP and discuss its possible roles with regards to the pathogenesis of EBOV and the development of specific antiviral drugs.


Ebolavirus , Hemorrhagic Fever, Ebola , Viral Envelope Proteins , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Biomarkers , Ebolavirus/drug effects , Ebolavirus/genetics , Ebolavirus/immunology , Ebolavirus/pathogenicity , Genes, Viral , Glycoproteins/genetics , Glycoproteins/immunology , Glycoproteins/metabolism , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Immune Evasion , Immunity, Innate , Protein Modification, Translational , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism , Virus Replication
18.
Viruses ; 11(10)2019 10 05.
Article En | MEDLINE | ID: mdl-31590353

Peste des petits ruminants is a highly contagious acute or subacute disease of small ruminants caused by the peste des petits ruminants virus (PPRV), and it is responsible for significant economic losses in animal husbandry. Vaccination represents the most effective means of controlling this disease, with virus-like particle (VLP) vaccines offering promising vaccine candidates. In this study, a PPRV VLP-based vaccine was developed using a baculovirus expression system, allowing for the simultaneous expression of the PPRV matrix (M), hemagglutinin (H), fusion (F) and nucleocapsid (N) proteins in insect cells. Immunization of mice and goats with PPRV VLPs elicited a robust neutralization response and a potent cellular immune response. Mouse studies demonstrated that VLPs induced a more robust IFN-γ response in CD4+ and CD8+ T cells than PPRV Nigeria 75/1 and recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. In addition, PPRV VLPs induced a strong Th1 class response in mice, as indicated by a high IgG2a to IgG1 ratio. Goat studies demonstrated that PPRV VLPs can induce the production of antibodies specific for F and H proteins and can also stimulate the production of virus neutralizing antibodies to the same magnitude as the PPRV Nigeria 75/1 vaccine. Higher amounts of IFN-γ in VLP-immunized animal serum suggested that VLPs also elicited a cellular immune response in goats. These results demonstrated that VLPs elicit a potent immune response against PPRV infection in small ruminants, making PPRV VLPs a potential candidate for PPRV vaccine development.


Goats/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Peste-des-Petits-Ruminants/immunology , Peste-des-petits-ruminants virus/immunology , Animals , Antibodies, Viral , Baculoviridae/genetics , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , Cytokines/blood , Disease Models, Animal , Female , Goat Diseases/virology , Immunization , Male , Mice , Mice, Inbred BALB C , Peste-des-Petits-Ruminants/prevention & control , Peste-des-petits-ruminants virus/genetics , Sf9 Cells , Viral Vaccines/immunology , Virion
19.
Intensive Care Med Exp ; 7(1): 54, 2019 Sep 13.
Article En | MEDLINE | ID: mdl-31520194

BACKGROUND: There are currently limited data for the use of specific antiviral therapies for the treatment of Ebola virus disease (EVD). While there is anecdotal evidence that supportive care may be effective, there is a paucity of direct experimental data to demonstrate a role for supportive care in EVD. We studied the impact of ICU-level supportive care interventions including fluid resuscitation, vasoactive medications, blood transfusion, hydrocortisone, and ventilator support on the pathophysiology of EVD in rhesus macaques infected with a universally lethal dose of Ebola virus strain Makona C07. METHODS: Four NHPs were infected with a universally lethal dose Ebola virus strain Makona, in accordance with the gold standard lethal Ebola NHP challenge model. Following infection, the following therapeutic interventions were employed: continuous bedside supportive care, ventilator support, judicious fluid resuscitation, vasoactive medications, blood transfusion, and hydrocortisone as needed to treat cardiovascular compromise. A range of physiological parameters were continuously monitored to gage any response to the interventions. RESULTS: All four NHPs developed EVD and demonstrated a similar clinical course. All animals reached a terminal endpoint, which occurred at an average time of 166.5 ± 14.8 h post-infection. Fluid administration may have temporarily blunted a rise in lactate, but the effect was short lived. Vasoactive medications resulted in short-lived improvements in mean arterial pressure. Blood transfusion and hydrocortisone did not appear to have a significant positive impact on the course of the disease. CONCLUSIONS: The model employed for this study is reflective of an intramuscular infection in humans (e.g., needle stick) and is highly lethal to NHPs. Using this model, we found that the animals developed progressive severe organ dysfunction and profound shock preceding death. While the overall impact of supportive care on the observed pathophysiology was limited, we did observe some time-dependent positive responses. Since this model is highly lethal, it does not reflect the full spectrum of human EVD. Our findings support the need for continued development of animal models that replicate the spectrum of human disease as well as ongoing development of anti-Ebola therapies to complement supportive care.

20.
PLoS One ; 14(5): e0216949, 2019.
Article En | MEDLINE | ID: mdl-31100082

The development of an effective vaccine against HIV infection remains a global priority. Dendritic cell (DC)-based HIV immunotherapeutic vaccine is a promising approach which aims at optimizing the HIV-specific immune response using primed DCs to promote and enhance both the cellular and humoral arms of immunity. Since the Ebola virus envelope glycoprotein (EboGP) has strong DC-targeting ability, we investigated whether EboGP is able to direct HIV particles towards DCs efficiently and promote potent HIV-specific immune responses. Our results indicate that the incorporation of EboGP into non-replicating virus-like particles (VLPs) enhances their ability to target human monocyte-derived dendritic cells (MDDCs) and monocyte-derived macrophages (MDMs). Also, a mucin-like domain deleted EboGP (EboGPΔM) can further enhanced the MDDCs and MDMs-targeting ability. Furthermore, we investigated the effect of EboGP on HIV immunogenicity in mice, and the results revealed a significantly stronger HIV-specific humoral immune response when immunized with EboGP-pseudotyped HIV VLPs compared with those immunized with HIV VLPs. Splenocytes harvested from mice immunized with EboGP-pseudotyped HIV VLPs secreted increased levels of macrophage inflammatory proteins-1α (MIP-1α) and IL-4 upon stimulation with HIV Env and/or Gag peptides compared with those harvested from mice immunized with HIV VLPs. Collectively, this study provides evidence for the first time that the incorporation of EboGP in HIV VLPs can facilitate DC and macrophage targeting and induce more potent immune responses against HIV.


AIDS Vaccines/immunology , Dendritic Cells/drug effects , HIV Antibodies/biosynthesis , HIV Infections/prevention & control , Macrophages/drug effects , Vaccines, Virus-Like Particle/immunology , Viral Envelope Proteins/genetics , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Animals , Chemokine CCL3/genetics , Chemokine CCL3/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Ebolavirus/chemistry , Female , Gene Expression , HEK293 Cells , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/growth & development , HIV-1/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunization , Immunogenicity, Vaccine , Interleukin-4/genetics , Interleukin-4/immunology , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/immunology , Macrophages/immunology , Macrophages/virology , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy , Primary Cell Culture , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Envelope Proteins/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
...