Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(43): 16176-16189, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847870

RESUMEN

Bisphenol-A bis(diphenyl phosphate) (BDP) has been increasingly detected in indoor environmental and human samples. Little is known about its developmental toxicity, particularly the intergenerational effects of parental exposure. In this study, adult zebrafish were exposed to BDP at 30-30,000 ng/L for 28 days, with results showing that exposure did not cause a transfer of BDP or its metabolites to offspring. Vascular morphometric profiling revealed that parental exposure to BDP at 30 and 300 ng/L exerted significant effects on the vascular development of offspring, encompassing diverse alterations in multiple types of blood vessels. N6-Methyladenosine (m6A) methylated RNA immunoprecipitation sequencing of larvae in the 300 ng/L group revealed 378 hypomethylated and 350 hypermethylated m6A peaks that were identified in mRNA transcripts of genes crucial for vascular development, including the Notch/Vegf signaling pathway. Concomitant changes in 5 methylcytosine (m5C) DNA methylation and gene expression of m6A modulators (alkbh5, kiaa1429, and ythdf1) were observed in both parental gonads and offspring exposed to BDP. These results reveal that parental exposure to low concentrations of BDP caused offspring vascular disorders by interfering with DNA and RNA methylation, uncovering a unique DNA-RNA modification pattern in the intergenerational transmission of BDP's developmental toxicity.


Asunto(s)
Metilación de ADN , Fosfatos , Animales , Adulto , Humanos , ARN/metabolismo , Pez Cebra/genética , ADN
2.
Chemosphere ; 335: 139146, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290517

RESUMEN

The pesticide fipronil is widely dispersed in aquatic environments and frequently detected in the general population. Although the adverse effects on embryonic growth by fipronil exposure have been extensively documented, the early responses for its developmental toxicity are largely unknown. In the present study, we explored the sensitive targets of fipronil, focusing on vascular injury using zebrafish embryos/larvae and cultured human endothelial cells. Exposure to 5-500 µg/L fipronil at the early stage impeded the growth of sub-intestinal venous plexus (SIVP), caudal vein plexus (CVP), and common cardinal veins (CCV). The damages on venous vessels occurred at exposure to the environmentally relevant concentration as low as 5 µg/L fipronil, whereas no significant change was observed in general toxicity indexes. In contrast, vascular development of the dorsal aorta (DA) or intersegmental artery (ISA) was not affected. In addition, the mRNA levels of vascular markers and vessel type-specific function genes exhibited significant decreases in venous genes, including nr2f2, ephb4a, and flt4, but no appreciable change in arterial genes. Likewise, the more pronounced changes in cell death and cytoskeleton disruption were shown in human umbilical vein endothelial cells as compared with human aortic endothelial cells. Furthermore, molecular docking supported a stronger affinity of fipronil and its metabolites to the proteins correlated with venous development, such as BMPR2 and SMARCA4. These results reveal the heterogeneity in developing vasculature responsive to fipronil's exposure. The preferential impacts on the veins confer higher sensitivity, allowing them to be appropriate targets for monitoring fipronil's developmental toxicity.


Asunto(s)
ADN Helicasas , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , Larva , Simulación del Acoplamiento Molecular , Células Endoteliales de la Vena Umbilical Humana , ADN Helicasas/metabolismo , Proteínas Nucleares , Factores de Transcripción/metabolismo
3.
Environ Sci Technol ; 57(14): 5782-5793, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36988553

RESUMEN

The placenta is pivotal for fetal development and maternal-fetal transfer of many substances, including per- and polyfluoroalkyl substances (PFASs). However, the intraplacental distribution of PFASs and their effects on placental vascular function remain unclear. In this study, 302 tetrads of matched subchorionic placenta (fetal-side), parabasal placenta (maternal-side), cord serum, and maternal serum samples were collected from Guangzhou, China. Eighteen emerging and legacy PFASs and five placental vascular biomarkers were measured. Results showed that higher levels of perfluorooctanoic (PFOA), perfluorooctane sulfonic acid (PFOS), and chlorinated polyfluorinated ether sulfonic acids (Cl-PFESAs) were detected in subchorionic placenta compared to parabasal placenta. There were significant associations of PFASs in the subchorionic placenta, but not in the serum, with placental vascular biomarkers (up to 32.5%) and lower birth size. Birth weight was negatively associated with PFOA (ß: -103.8, 95% CI: -186.3 and -21.32) and 6:2 Cl-PFESA (ß: -80.04, 95% CI: -139.5 and -20.61), primarily in subchorionic placenta. Mediation effects of altered placental angiopoietin-2 and vascular endothelial growth factor receptor-2 were evidenced on associations of adverse birth outcomes with intraplacental PFOS and 8:2 Cl-PFESA, explaining 9.5%-32.5% of the total effect. To the best of our knowledge, this study is the first to report on differential intraplacental distribution of PFASs and placental vascular effects mediating adverse birth outcomes and provides novel insights into the placental plate-specific measurement in PFAS-associated health risk assessment.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Embarazo , Femenino , Placenta/química , Factor A de Crecimiento Endotelial Vascular , China , Fluorocarburos/análisis , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA