Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.196
1.
J Inflamm Res ; 17: 2697-2710, 2024.
Article En | MEDLINE | ID: mdl-38707955

Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.

2.
Virulence ; 15(1): 2350892, 2024 12.
Article En | MEDLINE | ID: mdl-38745370

The evasive tactics of Treponema pallidum pose a major challenge in combating and eradicating syphilis. Natural killer (NK) cells mediate important effector functions in the control of pathogenic infection, preferentially eliminating targets with low or no expression of major histocompatibility complex (MHC) class I. To clarify T. pallidum's mechanisms in evading NK-mediated immunosurveillance, experiments were performed to explore the cross-talk relations among T. pallidum, NK cells, and platelets. T. pallidum adhered to, activated, and promoted particle secretion of platelets. After preincubation with T. pallidum, platelets expressed and secreted high levels of MHC class I, subsequently transferring them to the surface of T. pallidum, potentially inducing an immune phenotype characterized by the "pseudo-expression" of MHC class I on the surface of T. pallidum (hereafter referred to a "pseudo-expression" of MHC class I). The polA mRNA assay showed that platelet-preincubated T. pallidum group exhibited a significantly higher copy number of polA transcript than the T. pallidum group. The survival rate of T. pallidum mirrored that of polA mRNA, indicating that preincubation of T. pallidum with platelets attenuated NK cell lethality. Platelets pseudo-expressed the MHC class I ligand on the T. pallidum surface, facilitating binding to killer cell immunoglobulin-like receptors with two immunoglobulin domains and long cytoplasmic tail 3 (KIR2DL3) on NK cells and initiating dephosphorylation of Vav1 and phosphorylation of Crk, ultimately attenuating NK cell lethality. Our findings elucidate the mechanism by which platelets transfer MHC class I to the T. pallidum surface to evade NK cell immune clearance.


Blood Platelets , Histocompatibility Antigens Class I , Killer Cells, Natural , Syphilis , Treponema pallidum , Killer Cells, Natural/immunology , Treponema pallidum/immunology , Treponema pallidum/genetics , Humans , Blood Platelets/immunology , Blood Platelets/microbiology , Histocompatibility Antigens Class I/immunology , Syphilis/immunology , Syphilis/microbiology , Immune Evasion
3.
Mater Today Bio ; 26: 101074, 2024 Jun.
Article En | MEDLINE | ID: mdl-38736613

The mechanical environment of vascular endothelial cells (ECs) encompasses a wide range of curvatures due to variations in blood vessel diameters. Integrins, key mediators of cell-matrix interactions, establish connections between the extracellular matrix and the actin cytoskeleton, influencing diverse cellular behaviors. In this study, we explored the impact of spatial confinement on human umbilical vein ECs (HUVECs) cultured within three-dimensional hydrogel microgrooves of varying curvatures and the underlying role of integrins in mediating cellular responses. Employing maskless lithography, we successfully fabricated precise and wall curvatures-controlled hydrogel microgrooves, conferring spatial constraints on the cells. Our investigations revealed substantial alterations in HUVEC behavior within the hydrogel microgrooves with varying sidewall curvatures, marked by reduced cell size, enhanced orientation, and increased apoptosis. Interestingly, microgroove curvature emerged as a crucial factor influencing cell orientation and apoptosis, with rectangular microgrooves eliciting distinct changes in cell orientation, while ring-form microgrooves exhibited higher apoptosis rates. The side-wall effect in the 20 µm region near the microgroove wall had the greatest influence on cell orientation and apoptosis. HUVECs within the microgrooves exhibited elevated integrin expression, and inhibition of αV-integrin by cilengitide significantly curtailed cell apoptosis without affecting proliferation. Additionally, integrin-mediated cell traction force closely correlated with the spatial confinement effect. Cilengitide not only reduced integrin and focal adhesion expression but also attenuated cell traction force and cytoskeletal actin filament alignment. Overall, our findings elucidate the spatial confinement of ECs in hydrogel microgrooves and underscores the pivotal role of integrins, particularly αV-integrin, in mediating cell traction force and apoptosis within this microenvironment.

4.
Respir Res ; 25(1): 186, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678295

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Apoptosis , Influenza A Virus, H3N2 Subtype , Melatonin , Pulmonary Disease, Chronic Obstructive , Animals , Melatonin/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/virology , Pulmonary Disease, Chronic Obstructive/physiopathology , Mice , Apoptosis/drug effects , RAW 264.7 Cells , Influenza A Virus, H3N2 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/immunology , Mice, Inbred C57BL , Male , Macrophages/drug effects , Macrophages/metabolism , Disease Progression , Cell Polarity/drug effects , Disease Models, Animal , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology
5.
Atherosclerosis ; 392: 117527, 2024 May.
Article En | MEDLINE | ID: mdl-38583286

BACKGROUND AND AIMS: Diabetic atherosclerotic vascular disease is characterized by extensive vascular calcification. However, an elevated blood glucose level alone does not explain this pathogenesis. We investigated the metabolic markers underlying diabetic atherosclerosis and whether extracellular Hsp90α (eHsp90α) triggers vascular endothelial calcification in this particular metabolic environment. METHODS: A parallel human/animal model metabolomics approach was used. We analyzed 40 serum samples collected from 24 patients with atherosclerosis and from the STZ-induced ApoE-/- mouse model. A multivariate statistical analysis of the data was performed, and mouse aortic tissue was collected for the assessment of plaque formation. In vitro, the effects of eHsp90α on endothelial cell calcification were assessed by serum analysis, Western blotting and immunoelectron microscopy. RESULTS: Diabetic ApoE-/- mice showed more severe plaque lesions and calcification damage. Stearamide, oleamide, l-thyroxine, l-homocitrulline and l-citrulline are biomarkers of diabetic ASVD; l-thyroxine was downregulated in both groups, and the thyroid sensitivity index was correlated with serum Hsp90α concentration. In vitro studies showed that eHsp90α increased Runx2 expression in endothelial cells through the LRP1 receptor. l-thyroxine reduced the increase in Runx2 levels caused by eHsp90α and affected the distribution and expression of LRP1 through hydrogen bonding with glutamine at position 1054 in the extracellular segment of LRP1. CONCLUSIONS: This study provides a mechanistic link between characteristic serum metabolites and diabetic atherosclerosis and thus offers new insight into the role of extracellular Hsp90α in promoting vascular calcification.


Diabetes Mellitus, Experimental , HSP90 Heat-Shock Proteins , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Thyroxine , Vascular Calcification , Humans , Animals , HSP90 Heat-Shock Proteins/metabolism , Vascular Calcification/metabolism , Vascular Calcification/pathology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Thyroxine/blood , Female , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Middle Aged , Core Binding Factor Alpha 1 Subunit/metabolism , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/pathology , Diabetic Angiopathies/etiology , Metabolomics/methods , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Metabolome/drug effects , Aged , Mice, Inbred C57BL , Aortic Diseases/metabolism , Aortic Diseases/pathology , Aortic Diseases/blood , Biomarkers/blood , Human Umbilical Vein Endothelial Cells/metabolism
6.
Cardiovasc Diabetol ; 23(1): 139, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664790

BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.


Diabetic Cardiomyopathies , Single-Cell Analysis , Transcriptome , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Animals , Gene Expression Profiling , Chromatin/metabolism , Chromatin/genetics , Mice, Inbred C57BL , Gene Regulatory Networks , Chromatin Assembly and Disassembly , Disease Models, Animal , Male , RNA-Seq , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology
7.
Clin Child Psychol Psychiatry ; : 13591045241241109, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565258

Although nonsuicidal self-injury (NSSI) is prevalent among adolescents and is associated with an increased risk of adverse outcomes, many adolescents with NSSI do not seek help. However, there is a lack of research on the factors that may increase the likelihood of help-seeking, especially within Asia. To address this gap, the present study examined whether certain factors were associated with informal and formal help-seeking - specifically gender, severity of NSSI, functions of NSSI and authoritative parenting. 121 adolescents (Mage = 16.2 years, 71.1% female) were recruited from specialist outpatient clinics and inpatient psychiatric wards from a public hospital in Singapore. One caregiver per adolescent was also recruited. Data from self-report questionnaires were analysed using logistics regression analyses. The results suggest that the severity of NSSI increases the likelihood of informal help-seeking, while adolescents who have parents with more authoritative parenting style are less likely to seek informal help. Gender and functions of NSSI were not found to be associated with help-seeking. The findings from this study can guide professionals in their efforts to encourage help-seeking within Asian populations, as well as inform prevention and treatment programs for Asian adolescents with NSSI.


Factors that encourage Asian youths who self-harm to get help from non-professionals and professionals: There are many youths who engage in self-harm for reasons other than suicide. Although self-harm could lead to various negative outcomes, many youths do not seek help. However, not much is known about what encourages these youths to seek help from non-professionals (e.g., family, friends) and professionals (e.g., psychologists), especially within Asia. This paper looked at certain factors that may be linked to whether youths seek help ­ including gender, severity of self-harm, reasons for self-harm, and parenting style. Youths and caregivers were recruited from a public hospital in Singapore. The study found that youths with more severe self-harm are more likely to seek help from non-professionals, whereas youths with parents who are highly responsive and provide consistent discipline are less likely to seek help from non-professionals. None of the factors studied were relevant in whether youths sought help from professionals. The findings from this study can guide professionals to prevent and treat self-harm in Asia, as well as improve efforts to encourage Asian youths to seek help.

8.
Front Plant Sci ; 15: 1361959, 2024.
Article En | MEDLINE | ID: mdl-38576787

Artemisinin biosynthesis, unique to Artemisia annua, is suggested to have evolved from the ancestral costunolide biosynthetic pathway commonly found in the Asteraceae family. However, the evolutionary landscape of this process is not fully understood. The first oxidase in artemisinin biosynthesis, CYP71AV1, also known as amorpha-4,11-diene oxidase (AMO), has specialized from ancestral germacrene A oxidases (GAOs). Unlike GAO, which exhibits catalytic promiscuity toward amorpha-4,11-diene, the natural substrate of AMO, AMO has lost its ancestral activity on germacrene A. Previous studies have suggested that the loss of the GAO copy in A. annua is responsible for the abolishment of the costunolide pathway. In the genome of A. annua, there are two copies of AMO, each of which has been reported to be responsible for the different product profiles of high- and low-artemisinin production chemotypes. Through analysis of their tissue-specific expression and comparison of their sequences with those of other GAOs, it was discovered that one copy of AMO (AMOHAP) exhibits a different transcript compared to the reported artemisinin biosynthetic genes and shows more sequence similarity to other GAOs in the catalytic regions. Furthermore, in a subsequent in vitro enzymatic assay, the recombinant protein of AMOHAP unequivocally demonstrated GAO activity. This result clearly indicates that AMOHAP is a GAO rather than an AMO and that its promiscuous activity on amorpha-4,11-diene has led to its misidentification as an AMO in previous studies. In addition, the divergent expression pattern of AMOHAP compared to that of the upstream germacrene A synthase may have contributed to the abolishment of costunolide biosynthesis in A. annua. Our findings reveal a complex evolutionary landscape in which the emergence of a new metabolic pathway replaces an ancestral one.

9.
J Natl Cancer Inst ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38637942

BACKGROUND: The prognostic value of traditional clinical indicators for locally recurrent nasopharyngeal carcinoma (lrNPC) is limited due to their inability to reflect intratumor heterogeneity. We aimed to develop a radiomic signature to reveal tumor immune heterogeneity and predict survival in lrNPC. METHODS: This multicenter, retrospective study included 921 patients with lrNPC. A machine learning signature and nomogram based on pretreatment MRI features were developed for predicting overall survival (OS) in a training cohort and validated in two independent cohorts. A clinical nomogram and an integrated nomogram were constructed for comparison. Nomogram performance was evaluated by concordance index (C-index) and receiver operating characteristic curve analysis. Accordingly, patients were classified into risk groups. The biological characteristics and immune infiltration of the signature were explored by RNA sequencing (RNA-seq) analysis. RESULTS: The machine learning signature and nomogram demonstrated comparable prognostic ability to a clinical nomogram, achieving C-indexes of 0.729, 0.718, and 0.731 in the training, internal, and external validation cohorts, respectively. Integration of the signature and clinical variables significantly improved the predictive performance. The proposed signature effectively distinguished patients between risk groups with significantly distinct OS rates. Subgroup analysis indicated the recommendation of local salvage treatments for low-risk patients. Exploratory RNA-seq analysis revealed differences in interferon response and lymphocyte infiltration between risk groups. CONCLUSIONS: An MRI-based radiomic signature predicted OS more accurately. The proposed signature associated with tumor immune heterogeneity may serve as a valuable tool to facilitate prognostic stratification and guide individualized management for lrNPC patients.

10.
Chem Commun (Camb) ; 60(34): 4573-4576, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38572995

A pyrrolo[2,1-a]isoquinoline core structure is prevalent in marine and other natural products. This article describes a tungsten-catalyzed [3+2] cycloaddition aromatization of dihydroisoquinoline ester and maleic anhydride or an acrylate. The photochemical reaction tolerates a range of functional groups such as ester, cyano, ketone, bromide, and alkene. It is shown that the cycloaddition-aromatization of 2-substitued acrylate catalyzed by a tungsten photocatalyst can be used to evaluate the leaving ability of the leaving group. Experiments done to determine the reaction mechanism revealed that the formation of an ion-pair intermediate generated in situ from dihydroisoquinoline ester and (Z)-4-methoxy-4-oxobut-2-enoic acid via the solvolysis of maleic anhydride with methanol is crucial for the cascade process to occur. The key cycloadduct acid intermediate derived from [3+2] cycloaddition was isolated and determined by X-ray crystallography.

11.
Front Big Data ; 7: 1291196, 2024.
Article En | MEDLINE | ID: mdl-38495848

We aimed to develop, train, and validate machine learning models for predicting preterm birth (<37 weeks' gestation) in singleton pregnancies at different gestational intervals. Models were developed based on complete data from 22,603 singleton pregnancies from a prospective population-based cohort study that was conducted in 51 midwifery clinics and hospitals in Wenzhou City of China between 2014 and 2016. We applied Catboost, Random Forest, Stacked Model, Deep Neural Networks (DNN), and Support Vector Machine (SVM) algorithms, as well as logistic regression, to conduct feature selection and predictive modeling. Feature selection was implemented based on permutation-based feature importance lists derived from the machine learning models including all features, using a balanced training data set. To develop prediction models, the top 10%, 25%, and 50% most important predictive features were selected. Prediction models were developed with the training data set with 5-fold cross-validation for internal validation. Model performance was assessed using area under the receiver operating curve (AUC) values. The CatBoost-based prediction model after 26 weeks' gestation performed best with an AUC value of 0.70 (0.67, 0.73), accuracy of 0.81, sensitivity of 0.47, and specificity of 0.83. Number of antenatal care visits before 24 weeks' gestation, aspartate aminotransferase level at registration, symphysis fundal height, maternal weight, abdominal circumference, and blood pressure emerged as strong predictors after 26 completed weeks. The application of machine learning on pregnancy surveillance data is a promising approach to predict preterm birth and we identified several modifiable antenatal predictors.

12.
Environ Sci Ecotechnol ; 21: 100399, 2024 Sep.
Article En | MEDLINE | ID: mdl-38469364

Chromate [Cr(VI)] contamination in groundwater is a global environmental challenge. Traditional elemental sulfur-based biotechnologies for Cr(VI) removal depend heavily on the synthesis of dissolved organic carbon to fuel heterotrophic Cr(VI) reduction, a bottleneck in the remediation process. Here we show an alternative approach by leveraging sulfur-disproportionating bacteria (SDB) inherent to groundwater ecosystems, offering a novel and efficient Cr(VI) removal strategy. We implemented SDB within a sulfur-packed bed reactor for treating Cr(VI)-contaminated groundwater, achieving a notable removal rate of 6.19 mg L-1 h-1 under oligotrophic conditions. We identified the chemical reduction of Cr(VI) via sulfide, produced through sulfur disproportionation, as a key mechanism, alongside microbial Cr(VI) reduction within the sulfur-based biosystem. Genome-centric metagenomic analysis revealed a symbiotic relationship among SDB, sulfur-oxidizing, and chromate-reducing bacteria within the reactor, suggesting that Cr(VI) detoxification by these microbial communities enhances the sulfur-disproportionation process. This research highlights the significance of sulfur disproportionation in the cryptic sulfur cycle in Cr(VI)-contaminated groundwater and proposes its practical application in groundwater remediation efforts.

13.
World J Gastrointest Endosc ; 16(2): 55-63, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38464818

BACKGROUND: Colorectal polyps (CPs) are frequently occurring abnormal growths in the colorectum, and are a primary precursor of colorectal cancer (CRC). The triglyceride-glucose (TyG) index is a novel marker that assesses metabolic health and insulin resistance, and has been linked to gastrointestinal cancers. AIM: To investigate the potential association between the TyG index and CPs, as the relation between them has not been documented. METHODS: A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan, Jiangsu Province, China, between January 2020 and December 2022 were included in this retrospective cross-sectional study. After excluding individuals who did not meet the eligibility criteria, descriptive statistics were used to compare characteristics between patients with and without CPs. Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs. The TyG index was calculated using the following formula: Ln [triglyceride (mg/dL) × glucose (mg/dL)/2]. The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports. RESULTS: A nonlinear relation between the TyG index and the prevalence of CPs was identified, and exhibited a curvilinear pattern with a cut-off point of 2.31. A significant association was observed before the turning point, with an odds ratio (95% confidence interval) of 1.70 (1.40, 2.06), P < 0.0001. However, the association between the TyG index and CPs was not significant after the cut-off point, with an odds ratio (95% confidence interval) of 0.57 (0.27, 1.23), P = 0.1521. CONCLUSION: Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals, suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.

14.
Chin J Integr Med ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38532153

OBJECTIVE: To establish the dynamic treatment strategy of Chinese medicine (CM) for metastatic colorectal cancer (mCRC) by machine learning algorithm, in order to provide a reference for the selection of CM treatment strategies for mCRC. METHODS: From the outpatient cases of mCRC in the Department of Oncology at Xiyuan Hospital, China Academy of Chinese Medical Sciences, 197 cases that met the inclusion criteria were screened. According to different CM intervention strategies, the patients were divided into 3 groups: CM treatment alone, equal emphasis on Chinese and Western medicine treatment (CM combined with local treatment of tumors, oral chemotherapy, or targeted drugs), and CM assisted Western medicine treatment (CM combined with intravenous regimen of Western medicine). The survival time of patients undergoing CM intervention was taken as the final evaluation index. Factors affecting the choice of CM intervention scheme were screened as decision variables. The dynamic CM intervention and treatment strategy for mCRC was explored based on the cost-sensitive classification learning algorithm for survival (CSCLSurv). Patients' survival was estimated using the Kaplan-Meier method, and the survival time of patients who received the model-recommended treatment plan were compared with those who received actual treatment plan. RESULTS: Using the survival time of patients undergoing CM intervention as the evaluation index, a dynamic CM intervention therapy strategy for mCRC was established based on CSCLSurv. Different CM intervention strategies for mCRC can be selected according to dynamic decision variables, such as gender, age, Eastern Cooperative Oncology Group score, tumor site, metastatic site, genotyping, and the stage of Western medicine treatment at the patient's first visit. The median survival time of patients who received the model-recommended treatment plan was 35 months, while those who receive the actual treatment plan was 26.0 months (P=0.06). CONCLUSIONS: The dynamic treatment strategy of CM, based on CSCLSurv for mCRC, plays a certain role in providing clinical hints in CM. It can be further improved in future prospective studies with larger sample sizes.

15.
Virol Sin ; 39(2): 301-308, 2024 Apr.
Article En | MEDLINE | ID: mdl-38452856

Hand, foot, and mouth disease (HFMD) is a common pediatric illness mainly caused by enteroviruses, which are important human pathogens. Currently, there are no available antiviral agents for the therapy of enterovirus infection. In this study, an excellent high-content antiviral screening system utilizing the EV-A71-eGFP reporter virus was developed. Using this screening system, we screened a drug library containing 1042 natural compounds to identify potential EV-A71 inhibitors. Fangchinoline (FAN), a bis-benzylisoquinoline alkaloid, exhibits potential inhibitory effects against various enteroviruses that cause HFMD, such as EV-A71, CV-A10, CV-B3 and CV-A16. Further investigations revealed that FAN targets the early stage of the enterovirus life cycle. Through the selection of FAN-resistant EV-A71 viruses, we demonstrated that the VP1 protein could be a potential target of FAN, as two mutations in VP1 (E145G and V258I) resulted in viral resistance to FAN. Our research suggests that FAN is an efficient inhibitor of EV-A71 and has the potential to be a broad-spectrum antiviral drug against human enteroviruses.


Antiviral Agents , Benzylisoquinolines , Drug Resistance, Viral , Antiviral Agents/pharmacology , Humans , Benzylisoquinolines/pharmacology , Drug Resistance, Viral/genetics , Virus Replication/drug effects , Enterovirus A, Human/drug effects , Enterovirus A, Human/genetics , Drug Evaluation, Preclinical , Genes, Reporter , High-Throughput Screening Assays , Capsid Proteins/genetics , Capsid Proteins/antagonists & inhibitors , Enterovirus/drug effects , Enterovirus/genetics , Cell Line , Green Fluorescent Proteins/genetics
16.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38530908

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Adiponectin , Diabetes Mellitus, Type 2 , Glycocalyx , Kidney Glomerulus , Animals , Glycocalyx/metabolism , Glycocalyx/drug effects , Adiponectin/metabolism , Adiponectin/genetics , Mice , Diabetes Mellitus, Type 2/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/drug effects , Tumor Necrosis Factor-alpha/metabolism , Syndecan-4/metabolism , Syndecan-4/genetics , Disease Models, Animal , Mice, Inbred C57BL
17.
Vox Sang ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38516962

BACKGROUND AND OBJECTIVES: Nucleic acid-amplification testing (NAT) is used for screening blood donations/donors for blood-borne viruses. We reviewed global viral NAT characteristics and NAT-yield confirmatory testing used by blood operators. MATERIALS AND METHODS: NAT characteristics and NAT-yield confirmatory testing used during 2019 was surveyed internationally by the International Society of Blood Transfusion Working Party Transfusion-Transmitted Infectious Diseases. Reported characteristics are presented herein. RESULTS: NAT was mainly performed under government mandate. Human immunodeficiency virus (HIV), hepatitis C virus (HCV) and hepatitis B virus (HBV) NAT was performed on all donors and donation types, while selective testing was reported for West Nile virus, hepatitis E virus (HEV), and Zika virus. Individual donation NAT was used for HIV, HCV and HBV by ~50% of responders, while HEV was screened in mini-pools by 83% of responders performing HEV NAT. Confirmatory testing for NAT-yield samples was generally performed by NAT on a sample from the same donation or by NAT and serology on samples from the same donation and a follow-up sample. CONCLUSION: In the last decade, there has been a trend towards use of smaller pool sizes or individual donation NAT. We captured characteristics of NAT internationally in 2019 and provide insights into confirmatory testing approaches used for NAT-yields, potentially benefitting blood operators seeking to implement NAT.

18.
BMC Infect Dis ; 24(1): 294, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448822

BACKGROUND: The latent and incubation periods characterize the transmission of infectious viruses and are the basis for the development of outbreak prevention and control strategies. However, systematic studies on the latent period and associated factors with the incubation period for SAS-CoV-2 variants are still lacking. We inferred the two durations of Delta, BA.1, and BA.2 cases and analyzed the associated factors. METHODS: The Delta, BA.1, and BA.2 (and its lineages BA.2.2 and BA.2.76) cases with clear transmission chains and infectors from 10 local SAS-CoV-2 epidemics in China were enrolled. The latent and incubation periods were fitted by the Gamma distribution, and associated factors were analyzed using the accelerated failure time model. RESULTS: The mean latent period for 672 Delta, 208 BA.1, and 677 BA.2 cases was 4.40 (95%CI: 4.24 ~ 4.63), 2.50 (95%CI: 2.27 ~ 2.76), and 2.58 (95%CI: 2.48 ~ 2.69) days, respectively, with 85.65% (95%CI: 83.40 ~ 87.77%), 97.80% (95%CI: 96.35 ~ 98.89%), and 98.87% (95%CI: 98.40 ~ 99.27%) of them starting to shed viruses within 7 days after exposure. In 405 Delta, 75 BA.1, and 345 BA.2 symptomatic cases, the mean latent period was 0.76, 1.07, and 0.79 days shorter than the mean incubation period [5.04 (95%CI: 4.83 ~ 5.33), 3.42 (95%CI: 3.00 ~ 3.89), and 3.39 (95%CI: 3.24 ~ 3.55) days], respectively. No significant difference was observed in the two durations between BA.1 and BA.2 cases. After controlling for the sex, clinical severity, vaccination history, number of infectors, the length of exposure window and shedding window, the latent period [Delta: exp(ß) = 0.81, 95%CI: 0.66 ~ 0.98, p = 0.034; Omicron: exp(ß) = 0.82, 95%CI: 0.71 ~ 0.94, p = 0.004] and incubation period [Delta: exp(ß) = 0.69, 95%CI: 0.55 ~ 0.86, p < 0.001; Omicron: exp(ß) = 0.83, 95%CI: 0.72 ~ 0.96, p = 0.013] were significantly shorter in 18 ~ 49 years but did not change significantly in ≥ 50 years compared with 0 ~ 17 years. CONCLUSION: Pre-symptomatic transmission can occur in Delta, BA.1, and BA.2 cases. The latent and incubation periods between BA.1 and BA.2 were similar but shorter compared with Delta. Age may be associated with the latent and incubation periods of SARS-CoV-2.


Epidemics , Infectious Disease Incubation Period , Humans , Cross-Sectional Studies , China/epidemiology , Disease Outbreaks
19.
J Affect Disord ; 355: 378-384, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38537754

BACKGROUND: The study of clinical biological indicators in bipolar disorder (BD) is important. In recent years, basic experiments have associated the pathophysiological mechanism of BD is related to mitochondrial dysfunction, but few clinical studies have confirmed this finding. OBJECT: The present study aimed to evaluate whether plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) levels, which can represent the degree of mitochondrial damage in vivo, are altered in patients with BD in early onset and during treatment compared with controls. METHOD: A total of 75 first-diagnosed drug-naive patients with BD and 60 HCs were recruited and followed up for 1 month. The clinical symptoms were assessed using HAMD, HAMA, and YMRS, and ccf-mtDNA levels were measured by qPCR before and after drug treatment in BD. RESULT: (1) The plasma ccf-mtDNA levels in first-diagnosed drug-naive patients with BD increased compared with those in HCs (p = 0.001). (2) Drug treatment for 1 month can decrease the expression of ccf-mtDNA in BD (p < 0.001). (3) No significant correlation was observed between the changes in ccf-mtDNA levels and the improvement of clinical symptoms in BD after drug treatment. CONCLUSION: The plasma ccf-mtDNA level was increased in BD, and decreased after pharmacological treatment. These outcomes suggested that plasma ccf-mtDNA level is likely to be sensitive to the drug response in BD, and mitochondrial pathway is a potential target for further therapy.


Bipolar Disorder , Humans , Bipolar Disorder/diagnosis , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Follow-Up Studies , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Case-Control Studies
20.
J Therm Biol ; 119: 103799, 2024 Jan.
Article En | MEDLINE | ID: mdl-38342042

Epidemiological evidence shows that diabetic patients are susceptible to high temperature weather, and brown adipose tissue (BAT) activity is closely related to type 2 diabetes (T2DM). Activation of BAT under cold stress helps improve T2DM. However, the impact of high temperature on the activity of BAT is still unclear. The study aimed to investigate the impact of heat stress on glucose and lipid metabolism in T2DM mice by influencing BAT activity. High-fat feeding and injecting streptozotocin (STZ) induced model of T2DM mice. All mice were randomly divided into three groups: a normal(N) group, a diabetes (DM) group and a heat stress diabetes (DMHS) group. The DMHS group received heat stress intervention for 3 days. Fasting blood glucose, fasting serum insulin and blood lipids were measured in all three groups. The activity of BAT was assessed by using quantitative real-time PCR (qRT-PCR), electron microscopy, and PET CT. Furthermore, the UHPLC-Q-TOF MS technique was employed to perform metabolomics analysis of BAT on both DM group and DMHS group. The results of this study indicated that heat stress aggravated the dysregulation of glucose and lipid metabolism, exacerbated mitochondrial dysfunction in BAT and reduced the activity of BAT in T2DM mice. This may be related to the abnormal accumulation of branched-chain amino acids (BCAAs) in the mitochondria of BAT.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Humans , Mice , Animals , Adipose Tissue, Brown/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Lipid Metabolism
...