Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37239360

RESUMEN

MicroRNAs (miRNAs) play a vital role in the nerve regulation of honey bees (Apis mellifera). This study aims to investigate the differences in expression of miRNAs in a honey bee's brain for olfactory learning tasks and to explore their potential role in a honey bee's olfactory learning and memory. In this study, 12 day old honey bees with strong and weak olfactory performances were utilized to investigate the influence of miRNAs on olfactory learning behavior. The honey bee brains were dissected, and a small RNA-seq technique was used for high-throughput sequencing. The data analysis of the miRNA sequences revealed that 14 differentially expressed miRNAs (DEmiRNAs) between the two groups, strong (S) and weak (W), for olfactory performance in honey bees were identified, which included seven up-regulated and seven down-regulated. The qPCR verification results of the 14 miRNAs showed that four miRNAs (miR-184-3p, miR-276-3p, miR-87-3p, and miR-124-3p) were significantly associated with olfactory learning and memory. The target genes of these DEmiRNAs were subjected to the GO database annotation and KEGG pathway enrichment analyses. The functional annotation and pathway analysis showed that the neuroactive ligand-receptor interaction pathway, oxidative phosphorylation, biosynthesis of amino acids, pentose phosphate pathway, carbon metabolism, and terpenoid backbone biosynthesis may be a great important pathway related to olfactory learning and memory in honey bees. Our findings together further explained the relationship between olfactory performance and the brain function of honey bees at the molecular level and provides a basis for further study on miRNAs related to olfactory learning and memory in honey bees.


Asunto(s)
Aprendizaje , MicroARNs , Abejas/genética , Animales , Encéfalo/metabolismo , Condicionamiento Clásico , MicroARNs/genética , MicroARNs/metabolismo , Olfato/genética
2.
Insects ; 13(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36354812

RESUMEN

The honey bee (Apis mellifera) plays vital ecological roles in the pollination of crops and the maintenance of ecological balance, and adult honey bees may be exposed to exogenous chemicals including heavy metals during their foraging activities. Cadmium (Cd) is regarded as a nonessential toxic metal and is readily accumulated in plants; honey bees can therefore acquire Cd through the collection of contaminated nectar. In the present study, honey bees were chronically exposed to Cd to investigate the effects of sublethal cadmium doses on the olfactory learning and brain gene expression profiles of honey bees. The results showed that Cd-treated bees exhibited significantly impaired olfactory learning performances in comparison with control bees. Moreover, the head weight was significantly lower in Cd-treated bees than in control bees after chronic exposure to Cd. Gene expression profiles between the Cd treatment and the control revealed that 79 genes were significantly differentially expressed. Genes encoding chemoreceptors and olfactory proteins were downregulated, whereas genes involved in response to oxidative stress were upregulated in Cd-treated bees. The results suggest that Cd exposure exerts oxidative stress in the brain of honey bees, and the dysregulated expression of genes encoding chemoreceptors, olfactory proteins, and cytochrome P450 enzymes is probably associated with impaired olfactory learning in honey bees.

3.
Insects ; 11(7)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640515

RESUMEN

The fungus Ascosphaera apis, an obligate fungal pathogen of honey bee brood, causes chalkbrood disease in honey bee larvae worldwide. Biological characteristics of the fungal pathogen and the molecular interactions between A. apis and honey bees have been studied extensively. However, little is known about the effects of A. apis infection on antioxidant enzyme activities and metabolic profiles of the gut of honey bee larvae. In this study, sandwich enzyme-linked immunosorbent assay and LC-MS based untargeted metabolomic analysis were employed to determine the changes in the specific activities of antioxidant enzymes and the metabolomic profiles in gut tissues of A. apis-infected larvae (105 A. apis spores per larva) and controls. Results showed that specific activities of superoxide dismutase, catalase and glutathione S-transferase were significantly higher in the guts of the control larvae than in the guts of the A. apis-infected larvae. The metabolomic data revealed that levels of 28 and 52 metabolites were significantly higher and lower, respectively, in the guts of A. apis-infected larvae than in the guts of control larvae. The 5-oxo-ETE level in the infected larvae was two times higher than that in the control larvae. Elevated 5-oxo-ETE levels may act as a potential metabolic biomarker for chalkbrood disease diagnosis, suggesting that A. apis infection induced obvious oxidative stress in the honey bee larvae. The levels of metabolites such as taurine, docosahexaenoic acid, and L-carnitine involved in combating oxidative stress were significantly decreased in the gut of A. apis-infected larvae. Overall, our results suggest that A. apis infection may compromise the ability of infected larvae to cope with oxidative stress, providing new insight into changing patterns of physiological responses to A. apis infection in honey bee larvae by concurrent use of conventional biochemical assays and untargeted metabolomics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...