Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931140

RESUMEN

Interaction between transcription factors (TFs) and motifs is essential for gene regulation and the subsequent phenotype formation. Soybean (Glycine max) JAGGEED 1 (GmJAG1) is a key TF that controls leaf shape, seed number and flower size. To understand the GmJAG1 binding motifs, in this study, we performed the GmJAG1 DNA affinity purification sequencing (DAP-seq) experiment, which is a powerful tool for the de novo motif prediction method. Two new significant GmJAG1 binding motifs were predicted and the EMSA experiments further verified the ability of GmJAG1 bound to these motifs. The potential binding sites in the downstream gene promoter were identified through motif scanning and a potential regulatory network mediated by GmJAG1 was constructed. These results served as important genomic resources for further understanding the regulatory mechanism of GmJAG1.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38943621

RESUMEN

Ionogel-based sensors have gained widespread attention in recent years due to their excellent flexibility, biocompatibility, and multifunctionality. However, the adaptation of ionogel-based sensors in extreme environments (such as humid, acidic, alkaline, and salt environments) has rarely been studied. Here, thermoplastic polyurethane/carbon nanotubes-ionic liquids (TPU/CNTs-ILs) ionogels with a complementary sandpaper morphology on the surface were prepared by a solution-casting method with a simple sandpaper as the template, and the hydrophobic flexible TPU/CNTs-ILs ionogel-based sensor was obtained by modification using nanoparticles modified with cetyltrimethoxysilane. The hydrophobicity improves the environmental resistance of the sensor. The ionogel-based sensor exhibits multimode sensing performance and can accurately detect response signals from strain (0-150%), pressure (0.1-1 kPa), and temperature (30-100 °C) stimuli. Most importantly, the hydrophobic TPU/CNTs-ILs ionogel-based sensors can be used not only as wearable strain sensors to monitor human motion signals but also for information transfer, writing recognition systems, and underwater activity monitoring. Thus, the hydrophobic TPU/CNTs-ILs ionogel-based sensor offers a new strategy for wearable electronics, especially for applications in extreme environments.

3.
Bladder (San Franc) ; 10: e21200012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155921

RESUMEN

Urothelial carcinoma (UC) represents a common malignancy of the urinary system that can involve the kidneys, ureter, bladder, and urethra. Advanced/metastatic UC (mUC) tends to have a poor prognosis. UC ranks third in terms of human epidermal growth factor receptor 2 (HER2) overexpression among all tumors. However, multiple studies found that, unlike breast cancer, variable degrees of HER2 positivity and poor consistency between HER2 protein overexpression and gene amplification have been found. Trials involving trastuzumab, pertuzumab, lapatinib, afatinib, and neratinib have failed to prove their beneficial effect in patients with HER2-positive mUC, and a clinical trial on T-DM1 (trastuzumab emtansine) was terminated prematurely because of the adverse reactions. However, a phase II trial showed that RC48-ADC was effective. In this review, we provided an in-depth overview of the advances in the research regarding HER2-targeted therapy and the role of HER2 in mUC. Furthermore, we also discussed the prospects of potential strategies aimed at overcoming anti-HER2 resistance, and summarize the novel anti-HER2 approaches for the management of mUC used in recent clinical trials.

4.
ACS Appl Mater Interfaces ; 15(37): 43963-43975, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37690053

RESUMEN

With the rapid development of triboelectric nanogenerators (TENGs), the exploration of self-powered, flexible, and wearable electronic devices has attracted widespread attention. However, the choice of tribomaterials and high humidity environment have a significant impact on the triboelectricity of TENG. Therefore, we prepared a composite fabric (HPC) with superhydrophobic and conductive properties, which was used simultaneously as a tribopositive material and electrode for the construction of promising wearable TENGs. Specifically, the loading of polydopamine, carbon nanotubes, and polypyrrole on the surface of the cotton fabric makes it have not only conductivity but also enhanced tribopositive polarity. Then, cetyltrimethoxysilane was selected to modify it to obtain superhydrophobicity. Compared with the common TENGs with a separate tribolayer and electrode, the integrated HPC-TENG shows the advantages of simpler structure and lighter wear. Moreover, compared with the unmodified fabric-based TENG, the performance of the proposed HPC-TENG is improved by nearly 7.2 times, and the maximum power density can reach 2.6 W m-2. This remarkable output can be attributed to the combination of strong electron-giving groups, high electrical conductivity, and abundant micro- and nanorough structure of the HPC fabric. More importantly, due to the water repellency of the fabric surface, the high output performance can be maintained under high humidity conditions. In addition, HPC-TENG has potential applications as pressure sensors for human motion status monitoring and multichannel sensing for smart game blanket entertainment. The newly designed HPC-TENG offers a new strategy for the development of superhydrophobic fabrics with an electrical conductivity, energy harvesting, and self-powered sensor.

5.
ACS Appl Mater Interfaces ; 15(30): 36999-37010, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37489589

RESUMEN

As a sustainable, clean, and friendly technology with a minimal carbon footprint when treating seawater or wastewater, interfacial solar vapor generation (ISVG) technology is a great alternative to traditional desalination and water purification methods (e.g., reverse osmosis and ultrafiltration). So far, it presents tremendous potential for applications in realizing desalination of seawater or brine, wastewater treatment, and so forth. However, the precipitated salt particles during conventional ISVG inevitably block the evaporator surface, resulting in the degradation of photothermal conversion and decrease of evaporation rate. Herein, a multi-functional non-contact Janus hollow evaporator based on copper foam was prepared, which was assembled by a hydrophobic light-to-heat conversion layer and a hydrophilic interfacial water evaporation layer as two separate parts. Accordingly, the precipitated salt in the ISVG system does not block the photothermal interface, increasing the stability of solar capture and reusability of the evaporator. Notably, the hollow structure of the evaporator has a local interfacial heating effect, endowing the evaporation system with a high seawater evaporation rate of 2.249 kg m-2 h-1. The evaporator is capable of stable operation for 10 h under 1 sun illumination even when evaporating concentrated brine (15 wt %). Moreover, the evaporation rate of water under one sun irradiation reached 2.284 kg m-2 h-1 and the solar-to-vapor efficiency reached 96.6%. Not only that, the evaporator was able to successfully purify wastewater containing dyes and heavy metal ions. The multi-functional Janus hollow interfacial solar evaporator will provide inspiration for upcoming research on the production of safety water.

6.
Phys Chem Chem Phys ; 25(11): 7986-7993, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36866807

RESUMEN

The electrocatalytic nitrogen reduction reaction (NRR) is a green and sustainable approach for producing ammonia. Low-cost carbon-based materials are promising catalysts for the electrochemical NRR. Among them, Cu-N4-graphene is a unique catalytic substrate. Its catalytic performance for the NRR has remained unclear as N2 can only be physisorbed on such a substrate. In this work, we focus on the influence of an electronic environment on the electrocatalytic NRR. DFT computations reveal that the NN bond can be effectively activated at a surface charge density of -1.88 × 1014 e cm-2 on Cu-N4-graphene and further the NRR proceeds via an alternating hydrogenation pathway. This work offers a new insight into the mechanism of the electrocatalytic NRR and emphasizes the importance of environmental charges in the electrocatalytic process of the NRR.

7.
ACS Appl Mater Interfaces ; 14(43): 48752-48761, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36251536

RESUMEN

Transforming glyoxal to value-added glyoxylic acid (GA) is highly desirable but challenging due to the uncontrollable over-oxidation. In this work, we report on a first demonstration of semi-oxidation of glyoxal with high selectivity (86.5%) and activity on WO3 nanoplate photoanode through the photoelectrochemical strategy. The optimization of reactivity was achieved via crystal facet regulation, showing a satisfactory GA production rate of 308.4 mmol m-2 h-2, 84.0% faradaic efficiency, and 4.3% total solar-to-glyoxylic acid efficiency on WO3 with enriched {200} facets at 1.6 V versus RHE. WO3 with a high {200} facet ratio exhibits more efficient electron-hole transfer kinetics, resulting in the facilitated formation of hydroxyl radicals (•OH) and glyoxal radicals. Meanwhile, the theoretical calculation results indicate that the high selectivity and activity come from the strong adsorption ability for glyoxal and the low reaction energy for glyoxal radical generation on the (200) facets of WO3. Moreover, the high energy demand toward oxalic acid production on WO3 leads to the exciting semi-oxidation process.

8.
J Colloid Interface Sci ; 616: 287-297, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219194

RESUMEN

Electrochemical water splitting for hydrogen production using cost-effective and high-efficiency electrocatalysts in alkaline electrolytes is of great significance for solving energy crisis and environmental pollution. Herein, we reported a superhydrophilic and underwater superaerophobic multistage layered micro-nano structure ofCo9S8-Ni3S2-CNTs/NF on nickel foam (NF) prepared by a simple one-step hydrothermal procedure. Particularly, the multistage layered micro-nano structure makes the electrode superhydrophilic and superaerophobic, which can facilitate the exposure of active sites, accelerate the tansfer of electrolyte and the release of gas bubbles. Consequently, the rough electrode demonstrated excellent catalytic performance in alkaline condition, which only need a low overpotential 127 mV for oxygen evolution reaction (OER) and 243 mV for hydrogen evolution reaction (HER) at 10 mA cm-2 and can keep a long durability for 10 h at 10 mA cm-2. In addition, the production of hydrogen in an electrolytic water device with Co9S8-Ni3S2-CNTs/NF as bifunctional electrode prowered by the electricity derived from solar and wind energy in laboratory condition was artificially simulated. This work represents a perspective in improving the electrocatalytic performance of water splitting by structure and wettability regulation and opens a new avenue for clean energy generation.

9.
Chemphyschem ; 22(23): 2392-2400, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34472174

RESUMEN

Designing high-performance materials for CO2 capture and conversion is of great significance to reduce the greenhouse effect and alleviate the energy crisis. The strategy of doping is widely used to improve activity and selectivity of the materials. However, it is unclear how the doping densities influence the materials' properties. Herein, we investigated the mechanism of CO2 capture, separation and conversion on MoS2 , MoSe2 and Janus MoSSe monolayers with different boron doping levels using density functional theory (DFT) simulations. The results indicate that CO2 , H2 and CH4 bind weakly to the monolayers without and with single-atom boron doping, rendering these materials unsuitable for CO2 capture from gas mixtures. In contrast, CO2 binds strongly to monolayers doped with diatomic boron, whereas H2 and CH4 can only form weak interactions with these surfaces. Thus, the monolayers doped with diatomic boron can efficiently capture and separate CO2 from such gas mixtures. The electronic structure analysis demonstrates that monolayers doped with diatomic doped are more prone to donating electrons to CO2 than those with single-atom boron doped, leading to activation of CO2 . The results further indicate that CO2 can be converted to CH4 on diatomic boron doped catalysts, and MoSSe is the most efficient of the surfaces studied for CO2 capture, separation and conversion. In summary, the study provides evidence for the doping density is vital to design materials with particular functions.

10.
ACS Appl Mater Interfaces ; 13(26): 31285-31297, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34170664

RESUMEN

Wearable superwettable surfaces with dynamic tunable wettability and self-healability are promising for advanced wearable electronics, whereas have been rarely reported. Herein, a flexible superhydrophobic shape memory film (SSMF) with switchable surface wettability and high strain sensitivity has been conveniently fabricated. The surface topography of the SSMF can be finely adjusted by a reversible stretching (bending)/recovery way, which makes it feasible to control the surface-switchable adhesive superhydrophobicity by simple body movements, demonstrating great advantages in selective droplet manipulation and smart control of droplet movement. Moreover, benefitting from the hierarchical micro/nanostructures and outstanding sensing performance, the flexible SSMFs with good adaptivity and durability can serve as smart wearable sensors attached to human skin to achieve full-range and real-time detection of human motions and intelligent control of Internet of Things. More interestingly, the unique dynamic dewetting property enables the sensors to work in a humid environment or rainy days. Overall, this work successfully integrates dynamic tunable superwettability into design of intelligent wearable electronics with multifunctions. The obtained SSMF-based wearable surface with dynamic dewetting properties reveals great potential in versatile application fields such as liquid-repellent electronics, wearable droplet manipulators, and all-weather intelligent actuators.


Asunto(s)
Materiales Inteligentes/química , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Monitoreo Fisiológico/métodos , Movimiento , Nanotubos de Carbono/química , Nanocables/química , Docilidad , Poliésteres/química , Poliuretanos/química , Plata/química , Humectabilidad
11.
Analyst ; 146(10): 3352-3360, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33999053

RESUMEN

The development of a rapid and low concentration detection method for naphthol isomers is of great significance for protecting human health and environmental safety due to their high toxicity and strong corrosivity. Here, we reported a novel hollow ZnO/ZnCo2O4 material derived by adjusting the molar ratio of Zn/Co of bimetal-organic frameworks (BMOFs) and its application for simultaneous detection of 1-naphthol (1-NAP) and 2-naphthol (2-NAP) by electrochemical methods. The oxidation peak currents of 1-NAP and 2-NAP on a ZnO/ZnCo2O4 modified carbon paste electrode (ZnO/ZnCo2O4/CPE) depended linearly on their concentrations in the range of 0.4-50 µM and 0.06-40 µM with detection limits of 0.13 and 0.02 µM, respectively. Their electrooxidation at the ZnO/ZnCo2O4/CPE was a one-electron and one-proton process. These excellent performances could be driven by the high conductivity and number of active sites as well as the unique structure of ZnO/ZnCo2O4. The tactic may shed light on developing new electrodes for fast and efficient electrochemical detection of naphthol isomers.

12.
Plant Cell Environ ; 43(4): 934-944, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31981430

RESUMEN

Day length has an important influence on flowering and growth habit in many plant species. In crops such as soybean, photoperiod sensitivity determines the geographical range over which a given cultivar can grow and flower. The soybean genome contains ~10 genes homologous to FT, a central regulator of flowering from Arabidopsis thaliana. However, the precise roles of these soybean FTs are not clearly. Here we show that one such gene, GmFT2b, promotes flowering under long-days (LDs). Overexpression of GmFT2b upregulates expression of flowering-related genes which are important in regulating flowering time. We propose a 'weight' model for soybean flowering under short-day (SD) and LD conditions. Furthermore, we examine GmFT2b sequences in 195 soybean cultivars, as well as flowering phenotypes, geographical distributions and maturity groups. We found that Hap3, a major GmFT2b haplotype, is associated with significantly earlier flowering at higher latitudes. We anticipate our assay to provide important resources for the genetic improvement of soybean, including new germplasm for soybean breeding, and also increase our understanding of functional diversity in the soybean FT gene family.


Asunto(s)
Glycine max/fisiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Clonación Molecular , Flores/crecimiento & desarrollo , Edición Génica , Regulación de la Expresión Génica de las Plantas/genética , Variación Genética/genética , Variación Genética/fisiología , Geografía , Fotoperiodo , Proteínas de Plantas/fisiología , Glycine max/genética , Glycine max/crecimiento & desarrollo , Factores de Transcripción/fisiología , Transcriptoma
13.
ACS Appl Mater Interfaces ; 11(46): 43751-43765, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31659888

RESUMEN

In view of the increasing serious water environmental and human health issues caused by oily wastewater, functional superwetting materials with controllable wettability, high durability, and scale preparation methods are highly desired for efficient oil/water separation. In this respect, a pH-responsive multifunctional fabric with switchable surface wettability, favorable mechanical durability, and self-repairing property has been developed via decorating the modified TiO2 nanoparticles of special surface compositions onto the fabric surface. By virtue of the intelligent surface wettability, the resulted superwettable fabric can be used for controllable separation of multiple oil/water mixtures, particularly the complicated oil/water/oil ternary mixtures, showing excellent separation efficiency and high filtration flux even under extreme pH conditions, which is comparable to most of the commercial and currently reported functionalized membranes. Simultaneously, the negative pressure-driven, continuous, high-speed, and highly efficient in situ purification of large volumes of oily wastewater is successfully achieved based on the resulted superwettable fabric. More importantly, with the as-prepared superwettable fabric as the filtration membrane, the continuous in situ separation of the synthetic oily product from the corresponding chemical reaction systems is well performed without interruption of the reaction, demonstrating outstanding merits of simplifying procedures, saving operation time, and increasing product yield. In addition, it is worth noting that the alkali-treated superhydrophilic fabric presents superior photocatalysis self-cleaning performance for various water-soluble organic pollutants. These unique advantages of the functionalized smart superwettable fabric ensure that it can be competent in multifarious relevant challenging settings, indicating a broad prospect for diverse practical applications, especially the oily wastewater treatment and multiple industrial operation optimizations.


Asunto(s)
Nanopartículas/química , Aceites/química , Procesos Fotoquímicos , Titanio/química , Aguas Residuales/química , Purificación del Agua , Catálisis , Interacciones Hidrofóbicas e Hidrofílicas
14.
ACS Appl Mater Interfaces ; 11(27): 24668-24682, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246414

RESUMEN

Developing multifunctional superwettable materials is highly demanded in the oil/water separation field but remains challenging due to the critical limitations of complex fabrication strategy and high cost. Herein, based on the cost-effective kaolin nanoparticles, we present a convenient and mild strategy for fabricating a smart superwettable material with multiple excellent performances, such as pH-responsive water wettability, self-cleaning property, favorable buoyancy, and air purification performance. By virtue of the dual rough surface structure and special chemical composition, the resultant material surface exhibits a superior pH-dependent wettability, which can be reversibly switched between superamphiphobicity and superhydrophilicity-superoleophobicity for many times in accordance with the pH value of the corresponding aqueous solution. As a result, the obtained superwettable material with reversible and controllable water wettability can be applied in efficient and continuous separation of multiple types of oil/water mixtures, especially the highly emulsified oil/water emulsions, via in situ or ex situ wettability change. To our knowledge, the smart material with the wetting property of superamphiphobicity that can be used for continuous emulsified wastewater purification has been rarely discussed in the emerging research works. In addition, the as-prepared material presents universal applicability to diversiform substrates and exhibits robust durability and stability against high-concentration salt solutions and rigorous mechanical abrasion. All of these above-mentioned advantages indicate that the as-prepared superwettable material will hold great potential in various practical applications, including oily wastewater remediation, smart aquatic device fabrication, liquid droplet manipulation, guiding liquid movement, and optimizing multiple operations in industrial fields.

15.
J Chem Inf Model ; 59(1): 170-180, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30474974

RESUMEN

Due to its inherently stronger hydration, Li+ faces a higher dehydration energy than Na+ at the entrance of the 8×(WL)4/POPE-CPNT. Present MD simulations show that it can enter the channel from a NaCl/LiCl solution only under an electric field stronger than 0.3 V nm-1, while Na+ is easier to move into the channel, which is well elucidated by two cations' PMF profiles. The cation-Ow radial distribution functions, the electrostatic interactions with water, and the orientations of neighboring water all refer to a more compact solvation structure and stronger hydration of Li+. Regardless of whether there is an external electric field, Na+ mainly appears in an α-plane zone, while Li+ does so in a midplane region. The increase in the electric field strength significantly accelerates the cations' axial diffusions, shortening the residence times of two cations in the channel. Furthermore, it makes channel water tend to take positive dipole states.


Asunto(s)
Litio/química , Simulación de Dinámica Molecular , Nanotubos de Péptidos/química , Péptidos Cíclicos/química , Sodio/química , Campos Electromagnéticos , Enlace de Hidrógeno , Electricidad Estática
16.
J Mol Model ; 24(7): 184, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29959542

RESUMEN

Present molecular dynamics simulations indicate that the methanol component in a methanol/water mixture is more likely to be trapped in a cyclic peptide nanotube (CPNT), while water molecules tend to be present at the channel mouths as transient guests. Channel water resides mainly between methanol and the CPNT wall, resulting in a distinct decrease in the H-bond number per channel methanol. Six designed CPNTs with different channel diameters and outer surface characteristics all possess distinct selectivity to methanol over water. Of these, the amphipathic 8 × (AQ)4-CPNT exhibits the best performance. Results in this study provide basic information for the application of a CPNT to enrich methanol from a methanol/water mixture. Graphical Abstract Typical overview of water and methanol molecular distribution in cyclic peptide nanotubes.


Asunto(s)
Metanol/química , Simulación de Dinámica Molecular , Nanotubos de Péptidos/química , Péptidos Cíclicos/química , Agua/química , Adsorción , Enlace de Hidrógeno , Relación Estructura-Actividad
17.
Org Biomol Chem ; 15(19): 4068-4071, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28443876

RESUMEN

An alcohol-mediated dithioacetalization process that gains direct access to the corresponding Markovnikov-selective 1,3-dithianes using unactivated alkynes and nonthiolic/odorless 2-chloro-1,3-dithiane in a highly efficient manner has been developed. This methodology has the advantage of having mild reaction conditions, and the dithioacetalization process gives good to excellent yields with high Markovnikov-selectivity.

18.
ACS Appl Mater Interfaces ; 9(1): 1011-1020, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27959496

RESUMEN

As the starting material, kaolin is selectively and diversely fabricated to the superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic materials, respectively. The wettability of the kaolin surface can be selectively controlled and regulated to different superwetting states by choosing the corresponding modification reagent. The procedure is facile to operate, and no special technique or equipment is required. In addition, the procedure is cost-effective and time-saving and the obtained super-repellent properties are very stable. The X-ray photoelectron spectroscopy analysis demonstrates different changes of kaolin particles surfaces which are responsible for the different super-repellency. The scanning electron microscopy displays geometric micro- and nanometer structures of the obtained three kinds of super-repellent materials. The results show that kaolin has good applications in many kinds of superwetting materials. The method demonstrated in this paper provides a new strategy for regulating and controlling the wettability of solid surfaces selectively, diversely, and comprehensively.

19.
Org Lett ; 18(12): 2840-3, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27249011

RESUMEN

A rare Ru-catalyzed highly selective synthesis of 3,4-dihydroisoquinolines or isoquinolines is accomplished via a redox-divergent hydrogen-retentive or hydrogen-releasing fashion. Notably, high cis-selectivity of 3,4-dihydroisoquinolines is achieved. Potential applications are shown by gram-scale reactions and very concise synthesis of N-containing polycyclic aromatic compounds. Primary mechanistic investigations indicate that the sequence of the major pathway involves Ru-catalyzed C-H activation, alkyne insertion, and subsequent 6π-electrocyclization.

20.
J Nanosci Nanotechnol ; 13(3): 1974-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23755632

RESUMEN

A stable superamphiphobic surface was successfully prepared with the carbon nanospheres film by means of a two steps method. Carbon nanosphere film was deposited by soot of burning cooking oil followed by fluorosilane modification. The results showed that the fluorosilane adopted for the surface modification can glue the loose carbon nanospheres, and make the surface energy decreased. The method reported here is suitable for the large-scale preparation of superamphiphobic surface. The scanning electron microscopy confirmed the synergistic binary geometric structures at micro- and nanometer scale. Transmission electron microscope examination demonstrated that all the carbon nanospheres have uniform diameter of about 50 nm. This method is cheap, time-saving and easy to control. This result will open a new avenue in the superamphiphobic coating research with utilizing carbon nanospheres in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...